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Abstract
The m-machine, n-job, permutation flowshop problem with the total tardiness objective 
is a common scheduling problem, known to be NP-hard. Branch and bound, the usual 
approach to finding an optimal solution, experiences difficulty when n exceeds 20. 
Here, we develop a genetic algorithm, GA, which can handle problems with larger n. 
We also undertake a numerical study comparing GA with an optimal branch and bound 
algorithm, and various heuristic algorithms including the well known NEH algorithm and 
a local search heuristic LH. Extensive computational experiments indicate that LH is an 
effective heuristic and GA can produce noticeable improvements over LH.
Keywords: genetic algorithm, scheduling, permutation flowshop, tardiness.

Introduction
In the permutation flowshop problem, each of n jobs has to be processed on machines 
1,…,m in that order. The processing times of each job on each machine are known. At 
any time, each machine can process at most one job and each job can be processed on 
at most one machine. Once the processing of a job on a machine has started, it must be 
completed without interruption. Also, each job must be processed in the same order 
at every machine. The usual objectives are the minimization of the make-span, total 
flow time, weighted total flow time, total tardiness, weighted total tardiness, and the 
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number of jobs late (see Pinedo 2002 for a review of the general flowshop problem). 
This article deals specifically with the objective of minimizing the total tardiness; 
however, its results can be adapted to other objectives. Tardiness equals the amount 
by which a job's completion time exceeds its due date. Practical effects of tardiness 
might include contractual penalty costs and loss of customer goodwill. Koulamas 1994 
provides a general review of scheduling problems with tardiness criteria.

Schedules where each job must be processed in the same order at every machine 
are called permutation schedules. For m ≤ 2, the restriction to such schedules is 
harmless; however, for larger m, there might exist a general schedule that performs 
better than any permutation schedule (Pinedo 2002). Finding such a schedule is often 
computationally impractical; moreover, as discussed in Kim 1995 there are many real 
situations where only permutation schedules are feasible. Most approaches restrict 
attention to permutation schedules. 

Most optimal algorithms for single machine tardiness problems combine dynamic 
programming or branch and bound with decomposition properties developed by 
Lawler 1997, Potts and Wassenhove 1982, and Szwarc 1993. Szwarc et al. 1998 employ 
an improved decomposition rule, which allows them to solve problems with n = 300. 
For multi-machine tardiness problems, Vallada et al. 2008 report that the literature 
contains only a handful of papers dealing with optimal algorithms. Kim 1995 applies 
branch and bound using a “backward branching” scheme. His results include a problem 
size reduction procedure, which sometimes yields a problem with a smaller n. More 
recently, Chung et al. 2006 obtain a more effective branch and bound algorithm by 
combining a different branching scheme with better bounds. Extensive computational 
experiments involving over 40,000 test problems suggest that Chung et al. 2006 can 
handle problems with n ≤ 20, but often experiences difficulty for problems with larger 
n. This is not surprising, since the m machine permutation flow shop problem with the 
total tardiness objective is NP-hard for m ≥ 1 (Pinedo 2002).

A practical way of dealing with multi-machine tardiness problems is to develop 
effective heuristic solutions. Kim 1993 evaluates several heuristics and recommends an 
adaptation of the NEH algorithm of Nawaz et al. 1993, while Armentano and Ronconi 
1999 propose a tabu search heuristic, which they compare with the NEH heuristic and 
the optimal branch and bound algorithm of Kim 1995. See Framinan et al. 2005, Kim 
1993, Ruiz and Maroto 2005, and Vallada et al. 2008 for reviews of the literature on 
heuristic algorithms. 

This article develops a genetic algorithm heuristic for multi-machine permutation 
flowshop problems with the total tardiness objective. It fills a gap by providing a 
solution procedure for problems that are not solvable by the branch and bound 
algorithm of Chung et al. 2006. The genetic algorithm concept, due to Holland 1975, 
has been successfully applied to many combinatorial optimization problems (see 
Reeves 1997). For flowshop problems, Arroyo and Armentano 2005, Etiler et al. 2004, 
and Tang and Liu 2002, respectively, present genetic algorithms for multi-objective 
criteria, the makespan objective, and the total flow time objective.
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How useful a heuristic solution is depends on how well it performs against 
an optimal solution. Although the ideal way to evaluate performance is through 
comparison studies, such studies are rarely reported in articles dealing with genetic 
algorithms for multi-machine scheduling problems, possibly because effective optimal 
algorithms are often unavailable. One advantage of this article is that the authors 
had developed the most up to date optimal algorithm for multi-machine tardiness 
problems and could use it to evaluate the performance of their genetic algorithm 
heuristic. Our numerical study finds that the genetic algorithm performs remarkably 
well making it a practical substitute for an optimal algorithm when n ≥ 15.

§2 introduces notation and describes steps that precede our various algorithms. 
One of these steps is a local search heuristic, LH, which provides a starting solution 
for our genetic algorithm, GA. §3 describes GA in detail. Some of its notable features 
include clone removal, maintenance of two populations with immigration, and 
probabilistic local search, i.e., each time one finds a new solution, one performs a local 
search with a given probability. §4 reports on a numerical study that compares the 
performance of GA, the branch and bound algorithm of Chung et al. 2006, and various 
heuristic algorithms. Finally, §5 states our conclusions.

Notation and Preliminaries
This section introduces notation and describes two steps that precede our branch and 
bound and genetic algorithms. The first step is a problem size reduction procedure 
of Kim 1995, which sometimes yields problems with reduced n that are easier to 
solve. The second step is a local search heuristic, LH, which extends the well-known 
NEH algorithm (see Kim 1993 and Nawaz et al. 1983) and outperforms the m-machine 
heuristic of Chung et al. 2002 and Chung et al. 2006. LH provides a starting solution for 
our genetic and branch and bound algorithms.

Notation. For i = 1,…,n, k = 1,…,m, and any algorithm, A, for generating a schedule, 
denote

pik processing time of job i on machine k,
di due date of job i,
gA total tardiness under the schedule generated by A.
Next, turn to Kim's problem size reduction procedure. By Proposition 7 of Kim 

1995, the completion time of all jobs is bounded above by

K = ( ) ( ){ } ( ) ( ) ( ){ }(max) 1 1max max max1 1
min 1 max , 1 maxn n

i i n j mi j ji j
p m p p n p≤ ≤ ≤ ≤= =

 + − + −  ∑ ∑

where pi(max) = max1≤j≤m pij and p(max)j = max1≤j≤npij. Jobs whose due dates exceed K 
have zero tardiness and can be scheduled last. Kim calls these jobs dominated jobs, since 
schedules where they precede other jobs are dominated by other schedules. This leads 
to the following procedure. Find all dominated jobs. Schedule them in the last available 
positions in ascending order of their due dates. Then delete them from the problem. 
Finally, reduce n and re-label jobs accordingly. Repeat until either a problem is found with 
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no dominated jobs or n has been reduced to 0. Let nr denote the value of the reduced n 
obtained by this procedure. From the above analysis, there exists an optimal schedule 
where the deleted jobs are placed in positions nr+1 through n in ascending order of 
their due dates. Given such a schedule, the total tardiness of the deleted jobs equals 0. 
Hence, for problems with nr equal to 0, the EDD schedule is optimal and the optimal total 
tardiness equals 0. Our local search heuristic, LH, below applies when nr > 0.

Our heuristic, LH, combines Kim's reduction procedure above with the procedure 
below, which depends on a single parameter, MAXREP. First, compute the EDD 
schedule. Stop if this step (or any of the steps below) yields a zero tardiness schedule. 
Second, compute the NEH schedule (see below). Third, starting with EDD as the initial 
incumbent, apply the ENS (extensive neighborhood search) algorithm of Kim 1993. ENS 
visits all neighbors of the current incumbent schedule, where a neighbor is obtained 
by interchanging a pair of jobs. If the best (in terms of the objective function) of the 
n(n-1)/2 neighbors is better than the incumbent, this best schedule becomes the new 
incumbent. Repeat until the best neighbor is no better than the current incumbent or 
the number of repetitions exceeds MAXREP. Fourth, apply ENS with NEH as the initial 
incumbent. Among the schedules obtained above, select the one with the smallest 
tardiness. Evaluating the tardiness of a schedule requires O (mn) calculations. Hence, 
visiting all neighbors of a given schedule requires O (mn3) calculations. For the nontrivial 
test problems of §4, the mean computation time for LH ranged from 0.001 seconds for n 
= 15 to 1.3 seconds for n = 120. Note that for these test problems, replacing EDD above 
with the more complicated m-machine heuristic of Chung et al. 2002 and Chung et al. 
2006 has a negligible effect on performance. 

This section closes with a description of our implementation of the NEH algorithm. 
Let σ = (σ(1),..., σ(s)) denote a partial schedule of length s, where 0 ≤ s ≤ n, indicating that 
job σ(j) occupies the jth position on each machine, for 1 ≤ j ≤ s. A partial schedule of length 
0 is the null schedule, and a partial schedule of length n is a complete schedule. For each 
job i not included in σ, define Ci(σ) as the makespan of the partial schedule (σ(1),..., σ(s),i). 
The NEH algorithm constructs a sequence of partial schedules of successively increasing 
lengths until a complete schedule of length n is obtained. First, NEH uses a dispatching 
rule to select a job i for a partial schedule (i) of length 1. Next, for s = 1 to n - 1, NEH gets 
a partial schedule of length s+1 from a partial schedule of length s using three steps. 
The first step selects a job i not included in the partial schedule σ using the dispatching 
rule. The second step lists the s+2 partial schedules of length s+1 that can be obtained by 
inserting job i at some position in the partial schedule σ. (Job i could be inserted before 
job σ(1), after job σ(s), or between jobs σ (j)and σ(j+1), where 1 ≤ j < s.) The third step 
selects one of these s +2 partial schedules according to some objective. Our version of the 
NEH algorithm is different from the one in Nawaz et al. 1983, which used maximization of 
the total processing time 1

m
ikk

p
=∑  for dispatching and minimum makespan as the objective. 

Following Armentano and Ronconi 1999, we use the MDD (modified due date rule) for 
dispatching, which selects the job i that minimizes max(di,Ci(σ)). For the objective, we use 
minimum total tardiness with minimum makespan as a tiebreaker.
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The Genetic Algorithm
Maintaining a population of solutions, genetic algorithms imitate genetic evolution. 
Periodically, the "fittest" members of the current population or generation breed to 
produce the next generation. Traits are passed on from parents to offspring in ways 
that resemble genetic mechanisms such as selection, crossover and mutation. The 
genetic algorithm stops after a finite number of generations with the best solution 
found as the proposed solution. For our genetic algorithm, GA, each solution or 
schedule s = (s1,s2,...,sn) is an element of X, the set of all permutation of the integers 
1 through n. For t = 1, 2,...,tmax, the tth generation S(t) = ( ) ( ) ( ){ }1 2, , ,t t t

Ns s s  ⊆  X¸ where the 
population size N is a multiple of 4 and the maximum generation number tmax is a 
positive integer. For s ϵ X, let g(s) denote the total tardiness of the schedule s. Also, let 
s* denote the incumbent best schedule, i.e., the current best solution found, and let 
g*=g(s*). Note that each evaluation of g(s) requires 0(mn) calculations. 

Under GA, initial values of s* and g* are provided by the local search heuristic, LH, 
of §2. The first generation S(1) consists of the schedules produced by EDD, NEH, ENS 
starting from EDD, ENS starting from NEH (see §2 for definitions), and N-4 schedules 
chosen at random. Subsequently, for t = 1, 2, ..., tmax - 1, generation t +1 is obtained from 
generation t, using the selection, crossover, mutation, and clone removal, immigration, 
and local search procedures described next.

Selection. One half of generation S(t) is selected for breeding. Generation S(t+1) will 
then consist of these breeders and their offspring. Selection depends on two positive 
valued parameters, an elitism factor, pelit, and a spread factor, psprad. Specifically, each 
s ϵ S(t) is assigned a fitness value, f(s), as follows. If g(s) ≤ g* + pelit, then f(s) = g(s); else f(s) 
= g(s)(1+ε), where each ε is a uniform random variable on [0,psprad/t] and is statistically 
independent of all other ε. In words, fitness equals tardiness if tardiness is within pelit 
of the best tardiness value found; else fitness equals tardiness plus a perturbation 
times tardiness. (Since the objective function is to be minimized, schedules with smaller 
fitness values tend to be more desirable.) Solutions are ranked in ascending order of 
fitness with ties broken arbitrarily and the N/2 solutions with the smallest fitness values 
are selected for breeding. Specifically, for j = 1 to N/4, solutions ( )

2 1
t
j−s  and ( )

2
t
js  produce 

two offspring using the crossover operation below. Note that since psprad/t decreases 
with t, selection depends more on g(s) as the generation number t increases.

Crossover. GA employs a two point crossover to generate two offspring from two 
parents. This procedure requires that n ≥ 4. First, we randomly generate two distinct 
integers, n1 and n2, strictly between 1 and n. Second, we obtain trial offspring as follows. 
If n1 < n2, offspring are generated by exchanging jobs in positions n2 through n1. If n1 > n2, 
offspring are generated by exchanging jobs outside positions n2 through n1. These trial 
offspring need not correspond to feasible schedules, since some jobs may be duplicated 
and others may be missing. We must correct them by replacing duplicated jobs with 
missing jobs. The example below illustrates how we do this.

A crossover example. Let n = 8, n1 = 3, and n2 = 5. Let parent 1 = (5,2,3,8,4,6,7,1) and 
parent 2 = (3,5,6,4,2,7,1,8). Then trial offspring 1 = (5,2,6,4,2,6,7,1), which duplicates 
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jobs 2 and 6, but misses jobs 3 and 8. Similarly, trial offspring 2 = (3,5,3,8,4,7,1,8), which 
duplicates jobs 3 and 8, but misses jobs 2 and 6. Note that the exchanged jobs are 
boldfaced. For j = 1 and 2, we correct trial offspring j by replacing its non-boldfaced 
duplicate jobs by its missing jobs, using the same order as parent j. Here, we replace the 
non-boldfaced 2 and 6 in trial offspring 1 by 3 and 8, respectively, because 3 precedes 
8 in parent 1. This procedure yields offspring 1 = (5,3,6,4,2,8,7,1) and offspring 2 = 
(6,5,3,8,4,7,1,2).

Mutation. GA uses two methods to perform a mutation on a solution: exchange 
and inversion. In an exchange, one randomly generates an integer n1, where 1 ≤ n1 < 
n, and then exchanges the jobs in position n1 and n1 + 1. In an inversion, one randomly 
generates two integers n1 and n2, where 1 ≤ n1 < n2 ≤ n, and then reverses the order 
of the jobs in positions n1 through n2. When applied to a population, our mutation 
procedure depends on a mutation parameter pmutn, where 0 ≤ pmutn ≤ 1, as follows. For 
each solution s in the population, one applies a mutation to s with probability pmutn. 
Note that mutations are never performed when pmutn = 0.

Clone removal. One can increase diversity by eliminating clones or duplicate 
solutions from the population. Clone removal is important because it eliminates the real 
possibility that all solutions in the population are the same. Checking the population 
for identical schedules is demanding computationally, however. To reduce computation 
time, our clone removal procedure compares the objective function values of schedules 
rather than the schedules themselves. Whenever two or more schedules have the same 
objective function values, we perform a mutation on all but one of them.

Probabilistic local search. One can often improve on a given solution s by 
examining the objective function values of all of its neighbors. If the smallest objective 
function value of the neighbors of s improves on g(s), then a neighbor with the smallest 
objective function value replaces s. Our implementation of local search depends on a 
local search parameter plocs, where 0 ≤ plocs ≤ 1, as follows. Each time a new solution is 
obtained in Steps 1 though 4 below, one performs a local search with probability plocs. 
One can, of course, prevent local searches by setting plocs = 0. Note that probabilistic 
local search has been used before, e.g., Ombuki and Ventresca 2004 incorporate it in a 
genetic algorithm for job shop scheduling. 

Neighborhood definition. Under LH, the local search heuristic of §2, a neighbor of 
solution is defined through the exchange of an arbitrary pair of jobs, resulting in each 
solution having O(n2) neighbors. A pilot study, however, found that the computations 
for GA were too burdensome under this definition. To ensure that each solution 
has only O(n) neighbors, GA defines neighbor via generalized adjacent pairwise 
interchanges, i.e., the interchange of jobs in any positions j and j + l, where 1 ≤ j, j + l ≤ n, 
and 1 ≤ l ≤ k, for some prescribed positive integer k. (This type of interchange reduces 
to an adjacent pairwise interchange when k = 1.) Since evaluating any g(s) requires 
O(mn) calculations, a local search requires O(mn2) calculations. Our pilot study found 
that k = 5 was effective in trading off solution quality versus computation time, so the 
value k = 5 is used in all of our reported results.
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Other local search methods are possible. First, our method performs exactly one 
pass through the neighbors of s. One alternative is to perform two passes when the 
first pass results in an improvement. Another is to make multiple passes, stopping 
when a pass makes no improvement. (This is used for LH and leads to a true local 
optimal solution.) Second, the neighbors of s could consist of circular rotations of 
the form, (sk,...,sn,s1,...,sk-1), where 1 < k ≤ n. Our pilot study indicated that the solution 
quality and computation time trade-offs are better under our local search method and 
our neighborhood definition. 

Termination criterion. GA stops before t exceeds tmax or when the number of 
successive generations with no improvement in the incumbent best schedule equals 
a stop parameter, pstop, whichever occurs first. Of course, GA keeps track of the 
generation number tlimp where the last improvement occurred. 

The five-step scheme below is controlled with the flag NOCLONE. This flag 
determines whether the clone removal operator is executed in Step 4 below. Notice 
that at the end of Steps 2, 3, and 4, our algorithm calls a procedure update. If the best 
solution in the current population is better than the incumbent solution, the update 
procedure replaces the incumbent solution with the best solution and sets tlimp = t. 

Step 1. Obtain the initial population and initialize the incumbent solution. Set t = 1 
and tlimp = 0.

Step 2. Use the selection and crossover procedures to generate a new population 
and call update.

Step 3. Apply the mutation procedure to the population and call update.
Step 4. If NOCLONE = TRUE, then apply the clone removal procedure and call 

update.
Step 5. If t = tmax or t - tlimp = pstop then stop; else set t = t + 1 and go to Step 2.
Multiple populations and immigration. One way of maintaining diversity is to have 

multiple populations and to apply the five-step scheme above to each population. The 
best of the solutions obtained for the individual populations would then be the final 
solution. Note that given multiple populations, one also has the option of allowing 
or not allowing immigration between populations. GA employs two populations and 
incorporates the flag, IMMIGRATION, which determines whether there is immigration. 
If IMMIGRATION = TRUE, then the overall computations are controlled by an periodicity 
parameter, pperd, as follows: Every pperd periods 20% of the solutions in each population 
are selected at random and transferred to the other population.

In summary, GA incorporates eight parameters, N, tmax, pstop, pelit, psprd, pmutn, plocs, 
pperd, together with two flags, NOCLONE and IMMIGRATION, combined with two types 
of mutation. Selecting options for GA entails trade-offs between the computation 
time and the solution quality. For example, increasing N, tmax, plocs and pstop tends to 
make the computation time worse and the solution quality better. 

To simplify the numerical analysis of §4, we undertook a pilot study involving 
an extensive number of test problems with a variety of options and found several 
apparent trends: First, the type of mutation does not affect the average solution 
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quality and computation time. Second, setting NOCLONE and IMMIGRATION equal to 
TRUE does a good job of trading-off average solution quality and average computation 
time. Given these results, the test problems reported in §4 have NOCLONE and 
IMMIGRATION set equal to TRUE. These problems also employ only the exchange 
method of mutation. Our pilot study tested N = 120, 160, and 200 and pperd = 20, 40, 
and 60 and found negligible differences in performance. Values of tmax up to 10000 
combined with various values of, pstop, pelit, psprd, pmutn, and plocs were also tested. There 
seemed to be little advantage to increasing tmax beyond 5000 or pstop beyond 400. Also 
pelit = 0.10, psprd = 0.05, and pmutn = 0.15 performed well. Therefore, the test problems of 
§4 employ the following values:

N = 120, tmax = 5000, pstop = 400, pelit = 0.10, psprd = 0.05, pmutn = 0.15, pperd = 40. 
One of our striking findings is that small values of plocs are effective in trading-off 

computation time and solution quality. Our original plan was to compare the options 
never use local search (plocs = 0) and always use local search (plocs = 1). Neither option did 
well in our pilot study. The first had problems with solution quality, while the second had 
problems with computation time. Our choice of probabilistic local search is designed to 
circumvent such problems. §4 performs a sensitivity analysis on plocs that compares the 
values 0, 0.01, 0.10, and 1. Its results suggest that plocs = 0.01 or 0.10 are good choices.

Numerical Study
This section reports on a numerical study that assesses the effectiveness of GA, our 
genetic algorithm, BB, the branch and bound algorithm of Chung et al. 2006, and 
LH, the local search heuristic of §2. Measuring the performance of these algorithms 
when n is large is not straightforward because optimal solutions are not always readily 
obtainable. We deal with this issue as follows. First, we evaluate LH by comparing it with 
the well known NEH algorithm, which is sometimes used as a benchmark in numerical 
studies (e.g., see Armentano and Ronconi 1999 and Etiler et al. 2004). Our numerical 
results find that LH significantly outperforms NEH, which suggests that LH is a more 
appropriate benchmark than NEH. Second, we evaluate GA and BB by comparing them 
with LH. Third, we further evaluate GA by comparing its objective function with an 
optimal objective function for test problems where BB provides an optimal solution. 
Note that most test problems with n ≤ 20 are solved to optimality by BB. 

Our test bank consists of 2160 randomly generated problems encompassing 
a wide variety of situations, with n assuming the values, 10, 15, 20, 30, 60, and 120. 
The numerical results suggest that LH is an effective heuristic and that both BB and GA 
can yield noticeable improvements over LH-at the cost of extra programming effort 
and computation time. In terms of trading-off computation time and solution quality, 
BB is superior to GA for n = 10 while GA is superior to BB for n ≥ 20. When n = 15, both 
algorithms perform acceptably, but GA has the advantage with computation time. 
For large n, the solution quality under BB is much worse that under GA and not much 
better than under LH. Finally, a sensitivity analysis indicates that GA does well for small 
values of plocs, the local search probability.
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Turn to our problem generation procedure. All processing times are generated by 
the scheme of Chung et al. 2002, and Chung et al. 2006. Specifically, for i = 1,…,n and 
k = 1,…,m, pik has a discrete uniform distribution on [aik, bik], where aik and bik depend 
on a trend and a correlation factor. A positive trend in the processing time for job i 
indicates that pik is increasing in k, while a negative trend indicates that pik is decreasing 
in k. Similarly, a correlation between the processing times of job i exists if pi1,...,pin 
are consistently relatively large or relatively small. For problems with correlation, 
additional integers, r1, i = 1,…,n, are randomly drawn from {0,1,2,3,4}. Depending on 
the existence of a trend and/or a correlation, we obtain the following six p-types.

(I) Neither correlation nor trend: aik = 1 and bik = 100.
(II) Correlation only: aik = 20 ri and bik = 20ri + 20.
(III) Positive trend only: aik = 12 ½ (k-1) + 1, and bik = 12 ½ (k-1) + 100.
(IV) Correlation and positive trend: aik =2½ (k-1) + 20ri +1, and bik =2½ (k-1) +20ri +20.
(V) Negative trend only: aik = 12½ (m-k) + 1, and bik = 12½ (m-k) + 100.
(VI) Correlation and negative trend: aik =2½ (m-k) +20ri + 1, and bik =2½ (m-k) +20ri +20.
Due dates are generated from the scheme of Kim 1995, which employs two 

parameters: a tardiness factor τ and a relative due-date range ρ. Specifically, for 
i = 1,…,n, di has a discrete uniform distribution on [ ](1 / 2), (1 / 2)P Pτ ρ τ ρ− − − + , where 
P is the following lower bound on the makespan (i.e., the time needed to complete all 
jobs):

P = { }1
1 1 11 1 1

max min minn j m
j m ij i n il i n ili l l j

p p p−

≤ ≤ ≤ ≤ ≤ ≤= = = +
+ +∑ ∑ ∑

The range and mean of di are approximately equal to ρP and P(1-τ), respectively. 
Varying τ and ρ as in Armentano and Ronconi 1999, we obtain the following four 
d-types:

(I) low tardiness factor (τ = 0.2) and wide relative due-date range (ρ = 1.2).
(II) low tardiness factor (τ = 0.2) and narrow relative due-date range (ρ = 0.6).
(III) high tardiness factor (τ = 0.4) and wide relative due-date range (ρ = 1.2).
(IV) high tardiness factor (τ = 0.4) and narrow relative due-date range (ρ = 0.6).
We use eighteen pairs of (m, n) values, i.e., all combinations of m = 2, 4, 8 and 

n = 10, 15, 20, 30, 60, and 120. For each (m, n), p-type, and d-type, we generate 5 
problems. There are thus 2160 test problems (i.e., 120 for each m and n value). 

Kim's problem size reduction procedure, described in §2, was applied to all test 
problems and LH was applied to all problems where nr, the reduced n, was positive. 
Problems with nr < 8 are easily solved by BB, but are too small for GA handle. Also LH 
is automatically optimal if gLH = 0. Therefore, classify a problem as active if nr ≥ 8 and > 
0. Among our 2160 test problems, 1513 were active, 269 had < 8, and 378 had 8 and 
gLH = 0. BB and GA were applied to the active problems, with LH yielding the initial 
incumbent. 

GA was coded in Fortran 90 and run under Compaq Visual Fortran version 6.1 on 
a 2.4 Ghz Pentium 4 under Windows XP; BB, LH, and NEH were coded in C and run 
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under Microsoft Visual C++ version 6.0 under Windows XP. All random numbers were 
generated by the ran1 procedure from Press et al. 1992. The parameter MAXREP of LH 
was set to 120. BB stopped prematurely whenever the node count reached a specified 
stop number M-with a schedule that might or might not be optimal. We tried several 
values of M, since it strongly affects the computation time and the solution quality 
of BB. Initially, we applied BB to all active problems after setting M = 107 for n = 10, 
15, 20, and 30 and setting M = 4·106 for n = 60 and 120. This led to optimal solutions 
whenever n = 10. Next, we resolved the problems with n = 15 and n = 20 after setting 
M = 2·107. This resulted in 94.3% of problems with n = 15 and in 43.6% of problems 
with n = 20 being solved to optimality. Then, we performed additional computations 
in which all of the problems with n = 15 where BB stopped prematurely were solved 
to optimality by setting M = 2·109. Among these 44 problems, 8 had their objective 
functions improved. (The other 36 were already optimal.)

The hardest problem took 1.44 hours and had a node count of 1.2 billion. All these 
computations together with all the computations for LH and NEH were performed 
on a 3.0 Ghz Pentium D. The remaining computations described next were arduous. 
They were run on several Pentium computers several with clock speeds ranging from 
1.7 Ghz to 3.0 Ghz, which must be taken into account when comparing computation 
times. First, to better depict optimal solutions, we resolved the problems with n = 20 
after setting M = 4·108. This resulted in 63.7% of problems being solved to optimality. 
Second, we resolved problems with n = 30 after setting M = 2·107and problems with 
n = 60 and 120 after setting M = 107. Incidentally, these changes in M greatly increased 
the mean computation time for BB, but had only a small effect on the average solution 
quality.

Active test problems can be classified according to whether BB succeeds in finding 
schedule which is known to be optimal or BB stops prematurely with a schedule 
that might be suboptimal. Table 1 reports on the number of test problems in each 
classification as a function of n and d-type (using the largest M values employed, i.e., 
M = 107 for n = 10, M = 2·109 for n = 15, M = 4·108 for n = 20, M = 2·107 for n = 30, and 
M = 107for n ≥ 60). Notice that d-type I and II problems are less likely to be active than 
d-type III and IV problems, especially as n increases. In particular, when n = 120, almost 
none of the d-type I and II problems and almost all of d-type III and IV problems are 
active.

All tables, but Table 1, deal with the 1513 active test problems. Table 2 reports on 
the number of active problems and the percent where BB stopped prematurely versus 
n and M. Notice that for the largest M values employed, BB stops prematurely for 0%, 
0%, 36.3%, 83.0%, 89.5%, and 88.8% of the active test problems when n = 10, 15, 20, 
30, 60, and 120, respectively. Note that the test problems of this article are harder than 
those of Chung et al. 2006, as shown by the percentage of problems where BB stops 
early.

Tables 3, 4, and 5 list the mean and standard deviations of the computation times of 
LH versus n, BB versus n and M, and GA versus n and ρlocs, respectively, for the active test 
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problems. Notice that the standard deviation values in these and other tables tend to 
be high relative to the mean values, reflecting the high degree of variability. The mean 
computation times for LH are much smaller than the mean computation times for GA 
and BB, but tend to increase rapidly with n. For large n, one might want to reduce the 
times for LH by making the parameter MAXREP smaller and redefining neighborhood 
along the lines of §3 in order as to get O(n) instead of O(n2) neighbors for each schedule 
and this bring the number of calculations for LH down from O(mn3) to O(mn2). 

Table 1. Number of problems in each classification vs. n and d-type (using highest M 
values for BB)

Classification
d-types I and II d-types III and IV

Row 
Totaln n

10 15 20 30 60 12 10 15 20 30 60 120
nr < 8 13 16 25 33 74 100 1 2 1 2 0 2 269

nr ≥ 8 and 31 40 58 73 85 78 1 2 3 5 1 1 378
BB stops normally 136 124 44 15 1 0 178 176 130 27 20 20 871

BB stops prematurely 0 0 53 59 20 2 0 0 46 146 159 157 642
Column Total 180 180 180 180 180 180 180 180 180 180 180 180 2160

Table 2. Number of active problems and % where BB stopped prematurely vs. n and M

n Active 
problems

% stopped
M = 4·106 M = 107 M = 2·107 M = 4·108 M = 2·109

10 314 - 0 - - -
15 300 - 9.0 5.7 - 0
20 273 - 60.8 56.4 36.3 -
30 247 - 85.4 83.0 - -
60 200 90.0 89.5 - - -

120 179 91.1 88.8 - - -

Table 3. Computation times for LH in seconds
n = 10 n = 15 n = 20 N = 30 n = 60 n = 120

mean s.d. mean s.d. mean s.d. Mean s.d. mean s.d. mean s.d.
0.0002 0.002 0.001 0.004 0.002 0.005 0.010 0.011 0.118 0.122 1.287 1.549

Table 4. Computation times for BB in seconds

n M = 4·106 M = 107 M = 2·107 M = 4·108 M = 2·109

mean s.d. mean s.d. mean s.d. mean s.d. mean s.d.
10 - - 0.01 0.03 - - - - - -
15 - - 17.5 34.7 23.8 52.0 - - 57.7 322.9
20 - - 166.2 160.9 311.3 314.4 3683.7 4762.1 - -
30 - - 448.6 313.1 1808.8 1530.2 - - - -
60 717.0 617.6 1887.2 1765.1 - - - - - -

120 2688.6 2526.0 6725.2 6575.7 - - - - - -
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Table 5. Computation time for GA in seconds

n ρlocs = 0 ρlocs = 0.01 ρlocs = 0.10 ρlocs = 1
mean s.d. mean s.d. mean s.d. mean s.d.

10 3.3 0.8 3.4 0.8 4.6 1.2 15.4 5.4
15 4.5 1.2 4.8 1.3 8.2 2.7 37.6 17.0
20 6.1 2.2 7.1 2.8 14.5 6.8 77.5 40.1
30 9.9 5.7 13.0 6.7 37.0 23.5 239.4 140.9
60 24.7 23.3 52.6 46.9 277.6 268.3 2010.6 1801.4

120 49.1 58.4 317.9 424.9 2509.3 3561.1 - -

Table 6. π (NEH, LH)
n = 10 n = 15 n = 20 n = 30 n = 60 n = 120

mean s.d. Mean s.d. mean s.d. mean s.d. mean s.d. mean s.d.
-11.1 40.5 -25.1 103.5 -34.8 218.8 -50.4 235.2 -37.2 135.1 -20.1 61.9

source: authors’ elaboration 

Table 7. % of cases where gLH < gNEH

n = 10 n = 15 n = 20 n = 30 n = 60 n = 120
59.9 68.0 80.2 89.9 89.0 89.9

Table 8. π (BB, LH)

n M = 4·106 M = 107 M = 2·107 M = 4·108 M = 2·109

mean s.d. mean s.d. mean s.d. mean s.d. mean s.d.
10 - - 1.8 9.2 - - - - - -
15 - - 3.7 12.2 3.7 12.2 - - 3.8 12.2
20 - - 3.7 11.0 3.9 11.4 4.7 12.3 - -
30 - - 2.0 10.1 2.1 10.1 - - - -
60 0.5 3.9 0.5 3.9 - - - - - -

120 0.01 0.1 0.03 0.2 - - - - - -

Table 9. π (GA, LH)

n
ρlocs = 0 ρlocs = 0.01 ρlocs = 0.10 ρlocs = 1

Mean s.d. Mean s.d. Mean s.d. Mean s.d.
10 1.7 9.2 1.6 8.2 1.8 9.2 1.8 9.2
15 3.0 11.2 3.5 11.7 3.7 12.2 3.7 12.2
20 3.2 10.1 4.6 11.3 5.3 12.9 5.3 13.0
30 3.8 12.9 6.8 16.7 7.8 17.8 8.4 18.7
60 2.9 11.4 7.3 16.6 8.2 17.3 8.6 17.5

120 1.6 7.9 3.9 10.6 4.5 11.6 - -
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Table 10. % of cases where selected algorithms outperform one another

n M gBB < gLH ρlocs = 0 ρlocs = 0.10
gGA<gLH gGA< gBB gBB< gGA gGA<gLH gGA< gBB gBB< gGA

10 107 23.9 22.9 0 1.9 23.9 0 0
15 107 38.7 32.3 0 14.0 39.3 0.7 1.3
15 2·109 39.3 32.3 0 14.7 39.3 0 13.3
20 2·107 46.5 45.4 11.0 22.3 56.4 19.0 3.7
20 4·108 52.7 45.4 4.0 26.4 56.4 7.7 4.4
30 2·107 23.9 55.1 42.1 12.1 73.7 60.3 1.2
60 4·106 4.0 55.3 54.2 0.6 78.0 74.5 0

120 4·106 1.7 45.3 43.6 0.6 81.0 79.3 0

Table 11. % of problems where BB stops normally and π*(GA) when BB stops normally

n M % stopped 
normally

π*(GA)
ρlocs = 0 ρlocs = 0.01 ρlocs = 0.10 ρlocs = 1

Mean s.d. Mean s.d. Mean s.d. Mean s.d.
10 107 100 0.1 0.7 0.3 4.2 0 0 0 0
15 2·109 100 1.1 7.1 0.3 2.9 0.05 0.6 0.01 0.1
20 4·108 63.7 2.5 9.2 1.2 7.3 0.1 0.9 0.01 0.1
30 2·107 17.0 0.4 1.3 0.1 0.6 0.05 0.2 0.02 0.1
60 107 10.5 2.6 10.3 0 0 0 0 0 0

120 107 11.2 0.01 0.04 0 0 0 0 - -

Turn to BB and GA. For n = 10, the mean computation time under BB is much 
smaller than under GA, while for n ≥ 20, the mean computation times for GA tend 
to be much smaller than for BB-especially when ρlocs is small. Notice that the mean 
computation times for GA in Table 5 appear to grow linearly with n when ρlocs = 0 and 
quadratically in n when ρlocs > 0. This is not surprising since each evaluation of the 
tardiness function, g(s), requires O(mn) calculations, while each local search for GA 
search requires O(mn2) calculations. As discussed later in this section, our numerical 
results indicate that small values of ρlocs are effective in trading-off computation time 
and solution quality.

The remaining tables deal with the solution quality of our algorithms on active test 
problems. In general, one can evaluate the solution quality of a schedule by comparing 
it with a benchmark schedule or with an optimal schedule-when an optimal schedule 
is obtainable. Our benchmark schedule is the one produced by LH and our criterion is 
the percentage average measure defined below. This measure is appropriate when the 
goal is to minimize a nonnegative objective function. 

Define the percentage advantage of algorithm A over LH by 
π (A,LH) = 100(gLH - gA) / gLH  (4.1)

For active test problems, gLH is positive so (4.1) is defined. The quantity π (A,LH) 
represents the difference between gLH and gA expressed as a percentage of gLH. Tables 
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6, 8, and 9 evaluate the solution quality of NEH, BB, and GA on active test problems 
using π(NEH, LH), π(BB, LH), and π(GA, LH), respectively. Note that NEH provides a 
starting solution for LH, and LH provides a starting solution for BB and GA. Hence, gLH ≤ 
gNEH, gBB ≤ gLH, and gGA ≤ gLH, implying that π(NEH, LH) ≤ 0, π(BB, LH) ≥ 0, and π(GA, LH) ≥ 
0 for active test problems. 

Similarly, define the percentage advantage of an optimal solution over A by

π*(A) = ( )
*

* *

0, if ,

100 , if ,

A

A A A

g g

g g g g g

 =


− >
  (4.2)

where g* denotes the optimal total tardiness. Note that (4.2) is always defined since 
g* ≥ 0, implying that gA > 0 when gA > g*. The quantity π*(A) represents the difference 
between gA and g* expressed as a percentage of gA. When BB stops normally, g* = gBB, 
so one can obtain π*(A). Table 11 uses π*(GA) to evaluate how close GA is to optimality 
on the set of test problems where BB stops normally.

Comparing LH with NEH, Table 6 reports on the mean and standard deviation of, 
π(NEH, LH), the percentage advantage of NEH over LH versus n, while Table 7 reports 
on the percentage of cases where gLH < gNEH versus n. These tables indicate that the 
solution quality under NEH tends to be much worse that under LH. For instance, when 
n = 60, the mean value of π(NEH) equals -37.2, i.e., on the average gNEH is 37.2% larger 
than gLH; furthermore, gLH < gNEH in 89.0 % of the cases. To verify that the differences 
between LH and NEH in Tables 6 and 7 also hold for large n, we generated additional 
test problems for n = 180, 240, and 300, using the same scheme as before, and got 
results similar to those for n = 120. These results suggest LH is a more appropriate 
benchmark than NEH when evaluating algorithms.

Table 8 compares BB with the LH by reporting in the mean and standard deviation 
of π(BB, LH) versus n and M. Similarly, Table 9 compares GA with LH by reporting in 
the mean and standard deviation of π(GA, LH) versus n and ρlocs. Notice that GA does 
much better than LH for all n tested, while BB does substantially better for small n 
only. Indeed, BB does only slightly better than LH when n is large, the mean percentage 
advantage equaling 0.5% for n = 60 and 0.03% for n = 120 for the largest M employed. 
These small values for large n might be due to BB often stopping prematurely. 

Table 10 reports on the percent of cases where GA and BB outperform LH, GA 
outperforms BB, and BB outperforms GA for selected values M and for ρlocs = 0 and 
0.10. Notice that gGA = gBB for all test problems when n = 10, M = 107 and ρlocs = 0.10. 
Since BB is always optimal those problems, GA must also be optimal. The results in 
Table 10 are more favorable to BB over LH when when n = 60 or 120 than the results in 
Table 8; however, when BB does better than LH, the difference tends to be small. For 
example, consider the cases reported in Tables 8 and 10 where n = 120 and M = 4·106. 
There, BB outperforms LH in 1.7% of the problems, but the average difference in the 
percentage advantage over NEH is only 0.01%.
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Turn to a comparison of GA and BB. As indicated in the analysis of the various cases 
below, our numerical results indicate that BB is better for small n and GA is better for 
moderate and large n. 

The case n = 10: As mentioned above, BB and LH obtain optimal schedules for all 
problems when M = 107 and ρlocs = 0.10; however, BB is the clear winner, since its mean 
computation time of 0.01 seconds is far superior to GA's mean computation time of 
4.6 seconds. (Both times are acceptable, however.) 

The case n = 15: In terms of average solution quality, BB with M = 107 and LH with 
ρlocs = 0.10 do equally well, with mean relative advantages over LH of 3.7% in Tables 
8 and 9. Nevertheless, GA with a mean time of 8.2 seconds seems to be the winner 
over BB with a mean time of 17.5 seconds. On the other hand, BB can obtain optimal 
solutions for all test problems (with, however, an increase in the mean time to 57.7 
seconds and only a 0.1% improvement in the mean relative advantage over LH).

The case n = 20. In terms of average solution quality and computation time, GA 
with ρlocs = 0.10 does better than BB for any of the M values tested, i.e., the mean 
values of π(GA, LH) in Table 9 are greater than the mean values of π(BB, LH) in Table 8, 
and the mean times for BB in Table 4 are greater than the mean times for GA in Table 5. 

The case n ≥ 30. In terms of average solution quality and computation time, GA 
with ρlocs = 0.01 does much better than BB for any of the M values tested. Furthermore, 
for n ≥ 60, the mean values of π(BB, LH) are close to 0 and BB never outperforms GA 
when ρlocs = 0.10 (see Tables 8 and 10). 

Table 11 reports on the percent of test problems where BB stops normally versus 
n, and the mean and standard deviation of π*(GA), the percentage advantage of an 
optimal solution over GA, versus n and ρlocs. In order to maximize the number of 
problems where BB stops normally and thus g* is available, Table 11 utilizes the largest 
value of M employed by BB. For n = 10 and 20, all problems are solved to optimality 
by BB, and GA is almost as good as BB when ρlocs ≥ 0.01. For n = 20, 63.7% of the 
problems are solved to optimality, and the average solution quality of GA is good for 
ρlocs = 0.01 and outstanding for ρlocs ≥ 0.10. Finally, for n ≥ 30, between 10% and 17% 
of the problems are solved to optimality by BB and GA is almost as good BB for such 
problems when ρlocs ≥ 0.01. For problems where n ≥ 30 and BB stops prematurely, the 
superior performance of GA indicates that on the average BB is not close to optimality; 
however, the average closeness of GA to optimality is unknown.

The parameter ρlocs strongly affects the computation time and the solution quality 
of GA. One of our more interesting findings is that small values of ρlocs are effective in 
trading-off computation time and solution quality. Tables 5 and 9 perform a sensitivity 
analysis on ρlocs that examines computation time and the solution quality of GA for ρlocs 
= 0, 0.01, 0.10, and 1. As expected, both computation time and solution quality tend to 
increase with ρlocs. The data suggest that ρlocs = 0.01 and ρlocs = 0.10 are effective choices. 

Incidentally, the entries for n = 120 and ρlocs = 1 are missing from Tables 5 and 9. 
A sample of over 100 test problems found that increasing ρlocs from 0.10 to 1 when 
n = 120 increased the mean of ρ(GA, LH) by under 0.5%, while greatly increasing 
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computation times. (Many test problems took over 24 hours to solve.) Also, observe 
that in the row for n = 10 of Table 9, the mean of ρ(GA, LH) is smaller for ρlocs = 0.01 than 
for ρlocs = 0, illustrating that ρ(GA, LH) is not always a nondecreasing function of ρlocs. 

Conclusions
The m-machine, n-job, permutation flowshop problem with the total tardiness 

objective is a common scheduling problem, known to be NP-hard. Branch and bound, 
the usual approach to finding an optimal solution, experiences difficulty when n 
exceeds 20. This article fills a gap by providing a solution procedure for problems that 
are not solvable by the branch and bound algorithm of Chung et al. 2006, developing 
a genetic algorithm, GA, which can handle problems with larger n. GA incorporates 
clone removal, two populations with immigration, and probabilistic local search. We 
also undertake a numerical study comparing GA with an optimal branch and bound 
algorithm BB, and various heuristic algorithms, including the well known NEH algorithm 
and a new heuristic LH. 

One critical advantage of this article is that the authors had developed the state 
of the art optimal algorithm for multi-machine tardiness problems and could use it to 
evaluate the performance of their algorithms. Extensive computational experiments 
indicate that LH is an effective heuristic and GA can produce noticeable improvements 
over LH. Furthermore, GA seems to do a much better job than BB of trading-off 
computation time and solution quality for n ≥ 15, and the solution quality under BB is 
not noticeably better than under LH for large n. One striking result is that GA appears 
to do well for small values of the local search probability.

For future research, we believe that the following topics are potentially useful: 
(i) the application of other solution techniques to the problem, e.g., Lagrangean 
relaxation and slack variable decomposition; (ii) extending GA to other objectives, e.g., 
total weighted tardiness, total flowtime, total weighted flowtime, and makespan. 
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Abstract (in Polish)
Permutacyjny problem przepływowy (ang. permutation flowshop problem) z m maszynami 
i n zadaniami oraz minimalizacją sumy opóźnień jest znanym zagadnieniem z zakresu 
szeregowania zadań. Zagadnienie to należy do kategorii NP-trudnych problemów 
optymalizacji kombinatorycznej. Metoda podziału i ograniczeń (ang. branch and bound), 
popularne podejście do rozwiązania problemu, doświadcza trudności (biorąc pod 
uwagę czas potrzebny dla znalezienia rozwiązania optymalnego) gdy n przekracza 20. 
W niniejszej pracy, proponujemy algorytm genetyczny GA dla rozwiązywania zagadnienia 
dla dużych wartości n. Przytaczamy wyniki obszernego studium obliczeniowego, które 
porównuje fukcjonowanie algorytmu GA z metodą podziału i ograniczeń oraz metodami 
heurystycznymi - znanym algorytmem NEH i heurystyką lokalnego przeszukiwania 
LH. Rezultaty obliczeniowe wskazują, że metoda LH jest wydajnym algorytmem 
heurystycznym i że metoda GA oferuje możliwość poprawy wyników w porównaniu 
z algorytmem LH.
Słowa kluczowe: algorytm genetyczny, planowanie, permutacja, opóźnienia.


