
26 / Chia-Shin Chung, James Flynn, Walter Rom, Piotr Staliński

Journal of Entrepreneurship, Management and Innovation (JEMI), Volume 8, Issue 2, 2012: 26-43

A Genetic Algorithm to Minimize
the Total Tardiness for M-Machine
Permutation Flowshop Problems

Chia-Shin Chung*, James Flynn**, Walter Rom***,

Piotr Staliński****

Abstract
The m-machine, n-job, permutation flowshop problem with the total tardiness objective
is a common scheduling problem, known to be NP-hard. Branch and bound, the usual
approach to finding an optimal solution, experiences difficulty when n exceeds 20.
Here, we develop a genetic algorithm, GA, which can handle problems with larger n.
We also undertake a numerical study comparing GA with an optimal branch and bound
algorithm, and various heuristic algorithms including the well known NEH algorithm and
a local search heuristic LH. Extensive computational experiments indicate that LH is an
effective heuristic and GA can produce noticeable improvements over LH.
Keywords: genetic algorithm, scheduling, permutation flowshop, tardiness.

Introduction
In the permutation flowshop problem, each of n jobs has to be processed on machines
1,…,m in that order. The processing times of each job on each machine are known. At
any time, each machine can process at most one job and each job can be processed on
at most one machine. Once the processing of a job on a machine has started, it must be
completed without interruption. Also, each job must be processed in the same order
at every machine. The usual objectives are the minimization of the make-span, total
flow time, weighted total flow time, total tardiness, weighted total tardiness, and the

* Dr. Chia-Shin Chung, Department of Operations and Supply Chain Management, Cleveland State Univesity, Cleveland, Ohio,
44115, c.chung@csuohio.edu.

** Dr. James Flynn, Department of Operations and Supply Chain Management, Cleveland State Univesity, Cleveland, Ohio,
44115, j.flynn@csuohio.edu.

*** Dr. Walter Rom, Department of Operations and Supply Chain Management, Cleveland State Univesity, Cleveland, Ohio,
44115, w.rom@csuohio.edu.

**** Dr. Piotr Staliński, Department of Quantitative Methods in Management, Wyższa Szkoła Biznesu-National Louis University,
33-300 Nowy Sącz, pstalinski@wsb-nlu.edu.pl.

27
A Genetic Algorithm to Minimize the Total Tardiness

for M-Machine Permutation Flowshop Problems /

Journal of Entrepreneurship, Management and Innovation (JEMI), Volume 8, Issue 2, 2012: 26-43

number of jobs late (see Pinedo 2002 for a review of the general flowshop problem).
This article deals specifically with the objective of minimizing the total tardiness;
however, its results can be adapted to other objectives. Tardiness equals the amount
by which a job's completion time exceeds its due date. Practical effects of tardiness
might include contractual penalty costs and loss of customer goodwill. Koulamas 1994
provides a general review of scheduling problems with tardiness criteria.

Schedules where each job must be processed in the same order at every machine
are called permutation schedules. For m ≤ 2, the restriction to such schedules is
harmless; however, for larger m, there might exist a general schedule that performs
better than any permutation schedule (Pinedo 2002). Finding such a schedule is often
computationally impractical; moreover, as discussed in Kim 1995 there are many real
situations where only permutation schedules are feasible. Most approaches restrict
attention to permutation schedules.

Most optimal algorithms for single machine tardiness problems combine dynamic
programming or branch and bound with decomposition properties developed by
Lawler 1997, Potts and Wassenhove 1982, and Szwarc 1993. Szwarc et al. 1998 employ
an improved decomposition rule, which allows them to solve problems with n = 300.
For multi-machine tardiness problems, Vallada et al. 2008 report that the literature
contains only a handful of papers dealing with optimal algorithms. Kim 1995 applies
branch and bound using a “backward branching” scheme. His results include a problem
size reduction procedure, which sometimes yields a problem with a smaller n. More
recently, Chung et al. 2006 obtain a more effective branch and bound algorithm by
combining a different branching scheme with better bounds. Extensive computational
experiments involving over 40,000 test problems suggest that Chung et al. 2006 can
handle problems with n ≤ 20, but often experiences difficulty for problems with larger
n. This is not surprising, since the m machine permutation flow shop problem with the
total tardiness objective is NP-hard for m ≥ 1 (Pinedo 2002).

A practical way of dealing with multi-machine tardiness problems is to develop
effective heuristic solutions. Kim 1993 evaluates several heuristics and recommends an
adaptation of the NEH algorithm of Nawaz et al. 1993, while Armentano and Ronconi
1999 propose a tabu search heuristic, which they compare with the NEH heuristic and
the optimal branch and bound algorithm of Kim 1995. See Framinan et al. 2005, Kim
1993, Ruiz and Maroto 2005, and Vallada et al. 2008 for reviews of the literature on
heuristic algorithms.

This article develops a genetic algorithm heuristic for multi-machine permutation
flowshop problems with the total tardiness objective. It fills a gap by providing a
solution procedure for problems that are not solvable by the branch and bound
algorithm of Chung et al. 2006. The genetic algorithm concept, due to Holland 1975,
has been successfully applied to many combinatorial optimization problems (see
Reeves 1997). For flowshop problems, Arroyo and Armentano 2005, Etiler et al. 2004,
and Tang and Liu 2002, respectively, present genetic algorithms for multi-objective
criteria, the makespan objective, and the total flow time objective.

28 / Chia-Shin Chung, James Flynn, Walter Rom, Piotr Staliński

Journal of Entrepreneurship, Management and Innovation (JEMI), Volume 8, Issue 2, 2012: 26-43

How useful a heuristic solution is depends on how well it performs against
an optimal solution. Although the ideal way to evaluate performance is through
comparison studies, such studies are rarely reported in articles dealing with genetic
algorithms for multi-machine scheduling problems, possibly because effective optimal
algorithms are often unavailable. One advantage of this article is that the authors
had developed the most up to date optimal algorithm for multi-machine tardiness
problems and could use it to evaluate the performance of their genetic algorithm
heuristic. Our numerical study finds that the genetic algorithm performs remarkably
well making it a practical substitute for an optimal algorithm when n ≥ 15.

§2 introduces notation and describes steps that precede our various algorithms.
One of these steps is a local search heuristic, LH, which provides a starting solution
for our genetic algorithm, GA. §3 describes GA in detail. Some of its notable features
include clone removal, maintenance of two populations with immigration, and
probabilistic local search, i.e., each time one finds a new solution, one performs a local
search with a given probability. §4 reports on a numerical study that compares the
performance of GA, the branch and bound algorithm of Chung et al. 2006, and various
heuristic algorithms. Finally, §5 states our conclusions.

Notation and Preliminaries
This section introduces notation and describes two steps that precede our branch and
bound and genetic algorithms. The first step is a problem size reduction procedure
of Kim 1995, which sometimes yields problems with reduced n that are easier to
solve. The second step is a local search heuristic, LH, which extends the well-known
NEH algorithm (see Kim 1993 and Nawaz et al. 1983) and outperforms the m-machine
heuristic of Chung et al. 2002 and Chung et al. 2006. LH provides a starting solution for
our genetic and branch and bound algorithms.

Notation. For i = 1,…,n, k = 1,…,m, and any algorithm, A, for generating a schedule,
denote

pik processing time of job i on machine k,
di due date of job i,
gA total tardiness under the schedule generated by A.
Next, turn to Kim's problem size reduction procedure. By Proposition 7 of Kim

1995, the completion time of all jobs is bounded above by

K = () (){ } () () (){ }(max) 1 1max max max1 1
min 1 max , 1 maxn n

i i n j mi j ji j
p m p p n p≤ ≤ ≤ ≤= =

 + − + − ∑ ∑

where pi(max) = max1≤j≤m pij and p(max)j = max1≤j≤npij. Jobs whose due dates exceed K
have zero tardiness and can be scheduled last. Kim calls these jobs dominated jobs, since
schedules where they precede other jobs are dominated by other schedules. This leads
to the following procedure. Find all dominated jobs. Schedule them in the last available
positions in ascending order of their due dates. Then delete them from the problem.
Finally, reduce n and re-label jobs accordingly. Repeat until either a problem is found with

29
A Genetic Algorithm to Minimize the Total Tardiness

for M-Machine Permutation Flowshop Problems /

Journal of Entrepreneurship, Management and Innovation (JEMI), Volume 8, Issue 2, 2012: 26-43

no dominated jobs or n has been reduced to 0. Let nr denote the value of the reduced n
obtained by this procedure. From the above analysis, there exists an optimal schedule
where the deleted jobs are placed in positions nr+1 through n in ascending order of
their due dates. Given such a schedule, the total tardiness of the deleted jobs equals 0.
Hence, for problems with nr equal to 0, the EDD schedule is optimal and the optimal total
tardiness equals 0. Our local search heuristic, LH, below applies when nr > 0.

Our heuristic, LH, combines Kim's reduction procedure above with the procedure
below, which depends on a single parameter, MAXREP. First, compute the EDD
schedule. Stop if this step (or any of the steps below) yields a zero tardiness schedule.
Second, compute the NEH schedule (see below). Third, starting with EDD as the initial
incumbent, apply the ENS (extensive neighborhood search) algorithm of Kim 1993. ENS
visits all neighbors of the current incumbent schedule, where a neighbor is obtained
by interchanging a pair of jobs. If the best (in terms of the objective function) of the
n(n-1)/2 neighbors is better than the incumbent, this best schedule becomes the new
incumbent. Repeat until the best neighbor is no better than the current incumbent or
the number of repetitions exceeds MAXREP. Fourth, apply ENS with NEH as the initial
incumbent. Among the schedules obtained above, select the one with the smallest
tardiness. Evaluating the tardiness of a schedule requires O (mn) calculations. Hence,
visiting all neighbors of a given schedule requires O (mn3) calculations. For the nontrivial
test problems of §4, the mean computation time for LH ranged from 0.001 seconds for n
= 15 to 1.3 seconds for n = 120. Note that for these test problems, replacing EDD above
with the more complicated m-machine heuristic of Chung et al. 2002 and Chung et al.
2006 has a negligible effect on performance.

This section closes with a description of our implementation of the NEH algorithm.
Let σ = (σ(1),..., σ(s)) denote a partial schedule of length s, where 0 ≤ s ≤ n, indicating that
job σ(j) occupies the jth position on each machine, for 1 ≤ j ≤ s. A partial schedule of length
0 is the null schedule, and a partial schedule of length n is a complete schedule. For each
job i not included in σ, define Ci(σ) as the makespan of the partial schedule (σ(1),..., σ(s),i).
The NEH algorithm constructs a sequence of partial schedules of successively increasing
lengths until a complete schedule of length n is obtained. First, NEH uses a dispatching
rule to select a job i for a partial schedule (i) of length 1. Next, for s = 1 to n - 1, NEH gets
a partial schedule of length s+1 from a partial schedule of length s using three steps.
The first step selects a job i not included in the partial schedule σ using the dispatching
rule. The second step lists the s+2 partial schedules of length s+1 that can be obtained by
inserting job i at some position in the partial schedule σ. (Job i could be inserted before
job σ(1), after job σ(s), or between jobs σ (j)and σ(j+1), where 1 ≤ j < s.) The third step
selects one of these s +2 partial schedules according to some objective. Our version of the
NEH algorithm is different from the one in Nawaz et al. 1983, which used maximization of
the total processing time 1

m
ikk

p
=∑ for dispatching and minimum makespan as the objective.

Following Armentano and Ronconi 1999, we use the MDD (modified due date rule) for
dispatching, which selects the job i that minimizes max(di,Ci(σ)). For the objective, we use
minimum total tardiness with minimum makespan as a tiebreaker.

30 / Chia-Shin Chung, James Flynn, Walter Rom, Piotr Staliński

Journal of Entrepreneurship, Management and Innovation (JEMI), Volume 8, Issue 2, 2012: 26-43

The Genetic Algorithm
Maintaining a population of solutions, genetic algorithms imitate genetic evolution.
Periodically, the "fittest" members of the current population or generation breed to
produce the next generation. Traits are passed on from parents to offspring in ways
that resemble genetic mechanisms such as selection, crossover and mutation. The
genetic algorithm stops after a finite number of generations with the best solution
found as the proposed solution. For our genetic algorithm, GA, each solution or
schedule s = (s1,s2,...,sn) is an element of X, the set of all permutation of the integers
1 through n. For t = 1, 2,...,tmax, the tth generation S(t) = () () (){ }1 2, , ,t t t

Ns s s ⊆ X¸ where the
population size N is a multiple of 4 and the maximum generation number tmax is a
positive integer. For s ϵ X, let g(s) denote the total tardiness of the schedule s. Also, let
s* denote the incumbent best schedule, i.e., the current best solution found, and let
g*=g(s*). Note that each evaluation of g(s) requires 0(mn) calculations.

Under GA, initial values of s* and g* are provided by the local search heuristic, LH,
of §2. The first generation S(1) consists of the schedules produced by EDD, NEH, ENS
starting from EDD, ENS starting from NEH (see §2 for definitions), and N-4 schedules
chosen at random. Subsequently, for t = 1, 2, ..., tmax - 1, generation t +1 is obtained from
generation t, using the selection, crossover, mutation, and clone removal, immigration,
and local search procedures described next.

Selection. One half of generation S(t) is selected for breeding. Generation S(t+1) will
then consist of these breeders and their offspring. Selection depends on two positive
valued parameters, an elitism factor, pelit, and a spread factor, psprad. Specifically, each
s ϵ S(t) is assigned a fitness value, f(s), as follows. If g(s) ≤ g* + pelit, then f(s) = g(s); else f(s)
= g(s)(1+ε), where each ε is a uniform random variable on [0,psprad/t] and is statistically
independent of all other ε. In words, fitness equals tardiness if tardiness is within pelit
of the best tardiness value found; else fitness equals tardiness plus a perturbation
times tardiness. (Since the objective function is to be minimized, schedules with smaller
fitness values tend to be more desirable.) Solutions are ranked in ascending order of
fitness with ties broken arbitrarily and the N/2 solutions with the smallest fitness values
are selected for breeding. Specifically, for j = 1 to N/4, solutions ()

2 1
t
j−s and ()

2
t
js produce

two offspring using the crossover operation below. Note that since psprad/t decreases
with t, selection depends more on g(s) as the generation number t increases.

Crossover. GA employs a two point crossover to generate two offspring from two
parents. This procedure requires that n ≥ 4. First, we randomly generate two distinct
integers, n1 and n2, strictly between 1 and n. Second, we obtain trial offspring as follows.
If n1 < n2, offspring are generated by exchanging jobs in positions n2 through n1. If n1 > n2,
offspring are generated by exchanging jobs outside positions n2 through n1. These trial
offspring need not correspond to feasible schedules, since some jobs may be duplicated
and others may be missing. We must correct them by replacing duplicated jobs with
missing jobs. The example below illustrates how we do this.

A crossover example. Let n = 8, n1 = 3, and n2 = 5. Let parent 1 = (5,2,3,8,4,6,7,1) and
parent 2 = (3,5,6,4,2,7,1,8). Then trial offspring 1 = (5,2,6,4,2,6,7,1), which duplicates

31
A Genetic Algorithm to Minimize the Total Tardiness

for M-Machine Permutation Flowshop Problems /

Journal of Entrepreneurship, Management and Innovation (JEMI), Volume 8, Issue 2, 2012: 26-43

jobs 2 and 6, but misses jobs 3 and 8. Similarly, trial offspring 2 = (3,5,3,8,4,7,1,8), which
duplicates jobs 3 and 8, but misses jobs 2 and 6. Note that the exchanged jobs are
boldfaced. For j = 1 and 2, we correct trial offspring j by replacing its non-boldfaced
duplicate jobs by its missing jobs, using the same order as parent j. Here, we replace the
non-boldfaced 2 and 6 in trial offspring 1 by 3 and 8, respectively, because 3 precedes
8 in parent 1. This procedure yields offspring 1 = (5,3,6,4,2,8,7,1) and offspring 2 =
(6,5,3,8,4,7,1,2).

Mutation. GA uses two methods to perform a mutation on a solution: exchange
and inversion. In an exchange, one randomly generates an integer n1, where 1 ≤ n1 <
n, and then exchanges the jobs in position n1 and n1 + 1. In an inversion, one randomly
generates two integers n1 and n2, where 1 ≤ n1 < n2 ≤ n, and then reverses the order
of the jobs in positions n1 through n2. When applied to a population, our mutation
procedure depends on a mutation parameter pmutn, where 0 ≤ pmutn ≤ 1, as follows. For
each solution s in the population, one applies a mutation to s with probability pmutn.
Note that mutations are never performed when pmutn = 0.

Clone removal. One can increase diversity by eliminating clones or duplicate
solutions from the population. Clone removal is important because it eliminates the real
possibility that all solutions in the population are the same. Checking the population
for identical schedules is demanding computationally, however. To reduce computation
time, our clone removal procedure compares the objective function values of schedules
rather than the schedules themselves. Whenever two or more schedules have the same
objective function values, we perform a mutation on all but one of them.

Probabilistic local search. One can often improve on a given solution s by
examining the objective function values of all of its neighbors. If the smallest objective
function value of the neighbors of s improves on g(s), then a neighbor with the smallest
objective function value replaces s. Our implementation of local search depends on a
local search parameter plocs, where 0 ≤ plocs ≤ 1, as follows. Each time a new solution is
obtained in Steps 1 though 4 below, one performs a local search with probability plocs.
One can, of course, prevent local searches by setting plocs = 0. Note that probabilistic
local search has been used before, e.g., Ombuki and Ventresca 2004 incorporate it in a
genetic algorithm for job shop scheduling.

Neighborhood definition. Under LH, the local search heuristic of §2, a neighbor of
solution is defined through the exchange of an arbitrary pair of jobs, resulting in each
solution having O(n2) neighbors. A pilot study, however, found that the computations
for GA were too burdensome under this definition. To ensure that each solution
has only O(n) neighbors, GA defines neighbor via generalized adjacent pairwise
interchanges, i.e., the interchange of jobs in any positions j and j + l, where 1 ≤ j, j + l ≤ n,
and 1 ≤ l ≤ k, for some prescribed positive integer k. (This type of interchange reduces
to an adjacent pairwise interchange when k = 1.) Since evaluating any g(s) requires
O(mn) calculations, a local search requires O(mn2) calculations. Our pilot study found
that k = 5 was effective in trading off solution quality versus computation time, so the
value k = 5 is used in all of our reported results.

32 / Chia-Shin Chung, James Flynn, Walter Rom, Piotr Staliński

Journal of Entrepreneurship, Management and Innovation (JEMI), Volume 8, Issue 2, 2012: 26-43

Other local search methods are possible. First, our method performs exactly one
pass through the neighbors of s. One alternative is to perform two passes when the
first pass results in an improvement. Another is to make multiple passes, stopping
when a pass makes no improvement. (This is used for LH and leads to a true local
optimal solution.) Second, the neighbors of s could consist of circular rotations of
the form, (sk,...,sn,s1,...,sk-1), where 1 < k ≤ n. Our pilot study indicated that the solution
quality and computation time trade-offs are better under our local search method and
our neighborhood definition.

Termination criterion. GA stops before t exceeds tmax or when the number of
successive generations with no improvement in the incumbent best schedule equals
a stop parameter, pstop, whichever occurs first. Of course, GA keeps track of the
generation number tlimp where the last improvement occurred.

The five-step scheme below is controlled with the flag NOCLONE. This flag
determines whether the clone removal operator is executed in Step 4 below. Notice
that at the end of Steps 2, 3, and 4, our algorithm calls a procedure update. If the best
solution in the current population is better than the incumbent solution, the update
procedure replaces the incumbent solution with the best solution and sets tlimp = t.

Step 1. Obtain the initial population and initialize the incumbent solution. Set t = 1
and tlimp = 0.

Step 2. Use the selection and crossover procedures to generate a new population
and call update.

Step 3. Apply the mutation procedure to the population and call update.
Step 4. If NOCLONE = TRUE, then apply the clone removal procedure and call

update.
Step 5. If t = tmax or t - tlimp = pstop then stop; else set t = t + 1 and go to Step 2.
Multiple populations and immigration. One way of maintaining diversity is to have

multiple populations and to apply the five-step scheme above to each population. The
best of the solutions obtained for the individual populations would then be the final
solution. Note that given multiple populations, one also has the option of allowing
or not allowing immigration between populations. GA employs two populations and
incorporates the flag, IMMIGRATION, which determines whether there is immigration.
If IMMIGRATION = TRUE, then the overall computations are controlled by an periodicity
parameter, pperd, as follows: Every pperd periods 20% of the solutions in each population
are selected at random and transferred to the other population.

In summary, GA incorporates eight parameters, N, tmax, pstop, pelit, psprd, pmutn, plocs,
pperd, together with two flags, NOCLONE and IMMIGRATION, combined with two types
of mutation. Selecting options for GA entails trade-offs between the computation
time and the solution quality. For example, increasing N, tmax, plocs and pstop tends to
make the computation time worse and the solution quality better.

To simplify the numerical analysis of §4, we undertook a pilot study involving
an extensive number of test problems with a variety of options and found several
apparent trends: First, the type of mutation does not affect the average solution

33
A Genetic Algorithm to Minimize the Total Tardiness

for M-Machine Permutation Flowshop Problems /

Journal of Entrepreneurship, Management and Innovation (JEMI), Volume 8, Issue 2, 2012: 26-43

quality and computation time. Second, setting NOCLONE and IMMIGRATION equal to
TRUE does a good job of trading-off average solution quality and average computation
time. Given these results, the test problems reported in §4 have NOCLONE and
IMMIGRATION set equal to TRUE. These problems also employ only the exchange
method of mutation. Our pilot study tested N = 120, 160, and 200 and pperd = 20, 40,
and 60 and found negligible differences in performance. Values of tmax up to 10000
combined with various values of, pstop, pelit, psprd, pmutn, and plocs were also tested. There
seemed to be little advantage to increasing tmax beyond 5000 or pstop beyond 400. Also
pelit = 0.10, psprd = 0.05, and pmutn = 0.15 performed well. Therefore, the test problems of
§4 employ the following values:

N = 120, tmax = 5000, pstop = 400, pelit = 0.10, psprd = 0.05, pmutn = 0.15, pperd = 40.
One of our striking findings is that small values of plocs are effective in trading-off

computation time and solution quality. Our original plan was to compare the options
never use local search (plocs = 0) and always use local search (plocs = 1). Neither option did
well in our pilot study. The first had problems with solution quality, while the second had
problems with computation time. Our choice of probabilistic local search is designed to
circumvent such problems. §4 performs a sensitivity analysis on plocs that compares the
values 0, 0.01, 0.10, and 1. Its results suggest that plocs = 0.01 or 0.10 are good choices.

Numerical Study
This section reports on a numerical study that assesses the effectiveness of GA, our
genetic algorithm, BB, the branch and bound algorithm of Chung et al. 2006, and
LH, the local search heuristic of §2. Measuring the performance of these algorithms
when n is large is not straightforward because optimal solutions are not always readily
obtainable. We deal with this issue as follows. First, we evaluate LH by comparing it with
the well known NEH algorithm, which is sometimes used as a benchmark in numerical
studies (e.g., see Armentano and Ronconi 1999 and Etiler et al. 2004). Our numerical
results find that LH significantly outperforms NEH, which suggests that LH is a more
appropriate benchmark than NEH. Second, we evaluate GA and BB by comparing them
with LH. Third, we further evaluate GA by comparing its objective function with an
optimal objective function for test problems where BB provides an optimal solution.
Note that most test problems with n ≤ 20 are solved to optimality by BB.

Our test bank consists of 2160 randomly generated problems encompassing
a wide variety of situations, with n assuming the values, 10, 15, 20, 30, 60, and 120.
The numerical results suggest that LH is an effective heuristic and that both BB and GA
can yield noticeable improvements over LH-at the cost of extra programming effort
and computation time. In terms of trading-off computation time and solution quality,
BB is superior to GA for n = 10 while GA is superior to BB for n ≥ 20. When n = 15, both
algorithms perform acceptably, but GA has the advantage with computation time.
For large n, the solution quality under BB is much worse that under GA and not much
better than under LH. Finally, a sensitivity analysis indicates that GA does well for small
values of plocs, the local search probability.

34 / Chia-Shin Chung, James Flynn, Walter Rom, Piotr Staliński

Journal of Entrepreneurship, Management and Innovation (JEMI), Volume 8, Issue 2, 2012: 26-43

Turn to our problem generation procedure. All processing times are generated by
the scheme of Chung et al. 2002, and Chung et al. 2006. Specifically, for i = 1,…,n and
k = 1,…,m, pik has a discrete uniform distribution on [aik, bik], where aik and bik depend
on a trend and a correlation factor. A positive trend in the processing time for job i
indicates that pik is increasing in k, while a negative trend indicates that pik is decreasing
in k. Similarly, a correlation between the processing times of job i exists if pi1,...,pin
are consistently relatively large or relatively small. For problems with correlation,
additional integers, r1, i = 1,…,n, are randomly drawn from {0,1,2,3,4}. Depending on
the existence of a trend and/or a correlation, we obtain the following six p-types.

(I) Neither correlation nor trend: aik = 1 and bik = 100.
(II) Correlation only: aik = 20 ri and bik = 20ri + 20.
(III) Positive trend only: aik = 12 ½ (k-1) + 1, and bik = 12 ½ (k-1) + 100.
(IV) Correlation and positive trend: aik =2½ (k-1) + 20ri +1, and bik =2½ (k-1) +20ri +20.
(V) Negative trend only: aik = 12½ (m-k) + 1, and bik = 12½ (m-k) + 100.
(VI) Correlation and negative trend: aik =2½ (m-k) +20ri + 1, and bik =2½ (m-k) +20ri +20.
Due dates are generated from the scheme of Kim 1995, which employs two

parameters: a tardiness factor τ and a relative due-date range ρ. Specifically, for
i = 1,…,n, di has a discrete uniform distribution on [](1 / 2), (1 / 2)P Pτ ρ τ ρ− − − + , where
P is the following lower bound on the makespan (i.e., the time needed to complete all
jobs):

P = { }1
1 1 11 1 1

max min minn j m
j m ij i n il i n ili l l j

p p p−

≤ ≤ ≤ ≤ ≤ ≤= = = +
+ +∑ ∑ ∑

The range and mean of di are approximately equal to ρP and P(1-τ), respectively.
Varying τ and ρ as in Armentano and Ronconi 1999, we obtain the following four
d-types:

(I) low tardiness factor (τ = 0.2) and wide relative due-date range (ρ = 1.2).
(II) low tardiness factor (τ = 0.2) and narrow relative due-date range (ρ = 0.6).
(III) high tardiness factor (τ = 0.4) and wide relative due-date range (ρ = 1.2).
(IV) high tardiness factor (τ = 0.4) and narrow relative due-date range (ρ = 0.6).
We use eighteen pairs of (m, n) values, i.e., all combinations of m = 2, 4, 8 and

n = 10, 15, 20, 30, 60, and 120. For each (m, n), p-type, and d-type, we generate 5
problems. There are thus 2160 test problems (i.e., 120 for each m and n value).

Kim's problem size reduction procedure, described in §2, was applied to all test
problems and LH was applied to all problems where nr, the reduced n, was positive.
Problems with nr < 8 are easily solved by BB, but are too small for GA handle. Also LH
is automatically optimal if gLH = 0. Therefore, classify a problem as active if nr ≥ 8 and >
0. Among our 2160 test problems, 1513 were active, 269 had < 8, and 378 had 8 and
gLH = 0. BB and GA were applied to the active problems, with LH yielding the initial
incumbent.

GA was coded in Fortran 90 and run under Compaq Visual Fortran version 6.1 on
a 2.4 Ghz Pentium 4 under Windows XP; BB, LH, and NEH were coded in C and run

35
A Genetic Algorithm to Minimize the Total Tardiness

for M-Machine Permutation Flowshop Problems /

Journal of Entrepreneurship, Management and Innovation (JEMI), Volume 8, Issue 2, 2012: 26-43

under Microsoft Visual C++ version 6.0 under Windows XP. All random numbers were
generated by the ran1 procedure from Press et al. 1992. The parameter MAXREP of LH
was set to 120. BB stopped prematurely whenever the node count reached a specified
stop number M-with a schedule that might or might not be optimal. We tried several
values of M, since it strongly affects the computation time and the solution quality
of BB. Initially, we applied BB to all active problems after setting M = 107 for n = 10,
15, 20, and 30 and setting M = 4·106 for n = 60 and 120. This led to optimal solutions
whenever n = 10. Next, we resolved the problems with n = 15 and n = 20 after setting
M = 2·107. This resulted in 94.3% of problems with n = 15 and in 43.6% of problems
with n = 20 being solved to optimality. Then, we performed additional computations
in which all of the problems with n = 15 where BB stopped prematurely were solved
to optimality by setting M = 2·109. Among these 44 problems, 8 had their objective
functions improved. (The other 36 were already optimal.)

The hardest problem took 1.44 hours and had a node count of 1.2 billion. All these
computations together with all the computations for LH and NEH were performed
on a 3.0 Ghz Pentium D. The remaining computations described next were arduous.
They were run on several Pentium computers several with clock speeds ranging from
1.7 Ghz to 3.0 Ghz, which must be taken into account when comparing computation
times. First, to better depict optimal solutions, we resolved the problems with n = 20
after setting M = 4·108. This resulted in 63.7% of problems being solved to optimality.
Second, we resolved problems with n = 30 after setting M = 2·107and problems with
n = 60 and 120 after setting M = 107. Incidentally, these changes in M greatly increased
the mean computation time for BB, but had only a small effect on the average solution
quality.

Active test problems can be classified according to whether BB succeeds in finding
schedule which is known to be optimal or BB stops prematurely with a schedule
that might be suboptimal. Table 1 reports on the number of test problems in each
classification as a function of n and d-type (using the largest M values employed, i.e.,
M = 107 for n = 10, M = 2·109 for n = 15, M = 4·108 for n = 20, M = 2·107 for n = 30, and
M = 107for n ≥ 60). Notice that d-type I and II problems are less likely to be active than
d-type III and IV problems, especially as n increases. In particular, when n = 120, almost
none of the d-type I and II problems and almost all of d-type III and IV problems are
active.

All tables, but Table 1, deal with the 1513 active test problems. Table 2 reports on
the number of active problems and the percent where BB stopped prematurely versus
n and M. Notice that for the largest M values employed, BB stops prematurely for 0%,
0%, 36.3%, 83.0%, 89.5%, and 88.8% of the active test problems when n = 10, 15, 20,
30, 60, and 120, respectively. Note that the test problems of this article are harder than
those of Chung et al. 2006, as shown by the percentage of problems where BB stops
early.

Tables 3, 4, and 5 list the mean and standard deviations of the computation times of
LH versus n, BB versus n and M, and GA versus n and ρlocs, respectively, for the active test

36 / Chia-Shin Chung, James Flynn, Walter Rom, Piotr Staliński

Journal of Entrepreneurship, Management and Innovation (JEMI), Volume 8, Issue 2, 2012: 26-43

problems. Notice that the standard deviation values in these and other tables tend to
be high relative to the mean values, reflecting the high degree of variability. The mean
computation times for LH are much smaller than the mean computation times for GA
and BB, but tend to increase rapidly with n. For large n, one might want to reduce the
times for LH by making the parameter MAXREP smaller and redefining neighborhood
along the lines of §3 in order as to get O(n) instead of O(n2) neighbors for each schedule
and this bring the number of calculations for LH down from O(mn3) to O(mn2).

Table 1. Number of problems in each classification vs. n and d-type (using highest M
values for BB)

Classification
d-types I and II d-types III and IV

Row
Totaln n

10 15 20 30 60 12 10 15 20 30 60 120
nr < 8 13 16 25 33 74 100 1 2 1 2 0 2 269

nr ≥ 8 and 31 40 58 73 85 78 1 2 3 5 1 1 378
BB stops normally 136 124 44 15 1 0 178 176 130 27 20 20 871

BB stops prematurely 0 0 53 59 20 2 0 0 46 146 159 157 642
Column Total 180 180 180 180 180 180 180 180 180 180 180 180 2160

Table 2. Number of active problems and % where BB stopped prematurely vs. n and M

n Active
problems

% stopped
M = 4·106 M = 107 M = 2·107 M = 4·108 M = 2·109

10 314 - 0 - - -
15 300 - 9.0 5.7 - 0
20 273 - 60.8 56.4 36.3 -
30 247 - 85.4 83.0 - -
60 200 90.0 89.5 - - -

120 179 91.1 88.8 - - -

Table 3. Computation times for LH in seconds
n = 10 n = 15 n = 20 N = 30 n = 60 n = 120

mean s.d. mean s.d. mean s.d. Mean s.d. mean s.d. mean s.d.
0.0002 0.002 0.001 0.004 0.002 0.005 0.010 0.011 0.118 0.122 1.287 1.549

Table 4. Computation times for BB in seconds

n M = 4·106 M = 107 M = 2·107 M = 4·108 M = 2·109

mean s.d. mean s.d. mean s.d. mean s.d. mean s.d.
10 - - 0.01 0.03 - - - - - -
15 - - 17.5 34.7 23.8 52.0 - - 57.7 322.9
20 - - 166.2 160.9 311.3 314.4 3683.7 4762.1 - -
30 - - 448.6 313.1 1808.8 1530.2 - - - -
60 717.0 617.6 1887.2 1765.1 - - - - - -

120 2688.6 2526.0 6725.2 6575.7 - - - - - -

37
A Genetic Algorithm to Minimize the Total Tardiness

for M-Machine Permutation Flowshop Problems /

Journal of Entrepreneurship, Management and Innovation (JEMI), Volume 8, Issue 2, 2012: 26-43

Table 5. Computation time for GA in seconds

n ρlocs = 0 ρlocs = 0.01 ρlocs = 0.10 ρlocs = 1
mean s.d. mean s.d. mean s.d. mean s.d.

10 3.3 0.8 3.4 0.8 4.6 1.2 15.4 5.4
15 4.5 1.2 4.8 1.3 8.2 2.7 37.6 17.0
20 6.1 2.2 7.1 2.8 14.5 6.8 77.5 40.1
30 9.9 5.7 13.0 6.7 37.0 23.5 239.4 140.9
60 24.7 23.3 52.6 46.9 277.6 268.3 2010.6 1801.4

120 49.1 58.4 317.9 424.9 2509.3 3561.1 - -

Table 6. π (NEH, LH)
n = 10 n = 15 n = 20 n = 30 n = 60 n = 120

mean s.d. Mean s.d. mean s.d. mean s.d. mean s.d. mean s.d.
-11.1 40.5 -25.1 103.5 -34.8 218.8 -50.4 235.2 -37.2 135.1 -20.1 61.9

source: authors’ elaboration

Table 7. % of cases where gLH < gNEH

n = 10 n = 15 n = 20 n = 30 n = 60 n = 120
59.9 68.0 80.2 89.9 89.0 89.9

Table 8. π (BB, LH)

n M = 4·106 M = 107 M = 2·107 M = 4·108 M = 2·109

mean s.d. mean s.d. mean s.d. mean s.d. mean s.d.
10 - - 1.8 9.2 - - - - - -
15 - - 3.7 12.2 3.7 12.2 - - 3.8 12.2
20 - - 3.7 11.0 3.9 11.4 4.7 12.3 - -
30 - - 2.0 10.1 2.1 10.1 - - - -
60 0.5 3.9 0.5 3.9 - - - - - -

120 0.01 0.1 0.03 0.2 - - - - - -

Table 9. π (GA, LH)

n
ρlocs = 0 ρlocs = 0.01 ρlocs = 0.10 ρlocs = 1

Mean s.d. Mean s.d. Mean s.d. Mean s.d.
10 1.7 9.2 1.6 8.2 1.8 9.2 1.8 9.2
15 3.0 11.2 3.5 11.7 3.7 12.2 3.7 12.2
20 3.2 10.1 4.6 11.3 5.3 12.9 5.3 13.0
30 3.8 12.9 6.8 16.7 7.8 17.8 8.4 18.7
60 2.9 11.4 7.3 16.6 8.2 17.3 8.6 17.5

120 1.6 7.9 3.9 10.6 4.5 11.6 - -

38 / Chia-Shin Chung, James Flynn, Walter Rom, Piotr Staliński

Journal of Entrepreneurship, Management and Innovation (JEMI), Volume 8, Issue 2, 2012: 26-43

Table 10. % of cases where selected algorithms outperform one another

n M gBB < gLH ρlocs = 0 ρlocs = 0.10
gGA<gLH gGA< gBB gBB< gGA gGA<gLH gGA< gBB gBB< gGA

10 107 23.9 22.9 0 1.9 23.9 0 0
15 107 38.7 32.3 0 14.0 39.3 0.7 1.3
15 2·109 39.3 32.3 0 14.7 39.3 0 13.3
20 2·107 46.5 45.4 11.0 22.3 56.4 19.0 3.7
20 4·108 52.7 45.4 4.0 26.4 56.4 7.7 4.4
30 2·107 23.9 55.1 42.1 12.1 73.7 60.3 1.2
60 4·106 4.0 55.3 54.2 0.6 78.0 74.5 0

120 4·106 1.7 45.3 43.6 0.6 81.0 79.3 0

Table 11. % of problems where BB stops normally and π*(GA) when BB stops normally

n M % stopped
normally

π*(GA)
ρlocs = 0 ρlocs = 0.01 ρlocs = 0.10 ρlocs = 1

Mean s.d. Mean s.d. Mean s.d. Mean s.d.
10 107 100 0.1 0.7 0.3 4.2 0 0 0 0
15 2·109 100 1.1 7.1 0.3 2.9 0.05 0.6 0.01 0.1
20 4·108 63.7 2.5 9.2 1.2 7.3 0.1 0.9 0.01 0.1
30 2·107 17.0 0.4 1.3 0.1 0.6 0.05 0.2 0.02 0.1
60 107 10.5 2.6 10.3 0 0 0 0 0 0

120 107 11.2 0.01 0.04 0 0 0 0 - -

Turn to BB and GA. For n = 10, the mean computation time under BB is much
smaller than under GA, while for n ≥ 20, the mean computation times for GA tend
to be much smaller than for BB-especially when ρlocs is small. Notice that the mean
computation times for GA in Table 5 appear to grow linearly with n when ρlocs = 0 and
quadratically in n when ρlocs > 0. This is not surprising since each evaluation of the
tardiness function, g(s), requires O(mn) calculations, while each local search for GA
search requires O(mn2) calculations. As discussed later in this section, our numerical
results indicate that small values of ρlocs are effective in trading-off computation time
and solution quality.

The remaining tables deal with the solution quality of our algorithms on active test
problems. In general, one can evaluate the solution quality of a schedule by comparing
it with a benchmark schedule or with an optimal schedule-when an optimal schedule
is obtainable. Our benchmark schedule is the one produced by LH and our criterion is
the percentage average measure defined below. This measure is appropriate when the
goal is to minimize a nonnegative objective function.

Define the percentage advantage of algorithm A over LH by
π (A,LH) = 100(gLH - gA) / gLH (4.1)

For active test problems, gLH is positive so (4.1) is defined. The quantity π (A,LH)
represents the difference between gLH and gA expressed as a percentage of gLH. Tables

39
A Genetic Algorithm to Minimize the Total Tardiness

for M-Machine Permutation Flowshop Problems /

Journal of Entrepreneurship, Management and Innovation (JEMI), Volume 8, Issue 2, 2012: 26-43

6, 8, and 9 evaluate the solution quality of NEH, BB, and GA on active test problems
using π(NEH, LH), π(BB, LH), and π(GA, LH), respectively. Note that NEH provides a
starting solution for LH, and LH provides a starting solution for BB and GA. Hence, gLH ≤
gNEH, gBB ≤ gLH, and gGA ≤ gLH, implying that π(NEH, LH) ≤ 0, π(BB, LH) ≥ 0, and π(GA, LH) ≥
0 for active test problems.

Similarly, define the percentage advantage of an optimal solution over A by

π*(A) = ()
*

* *

0, if ,

100 , if ,

A

A A A

g g

g g g g g

 =

− >
 (4.2)

where g* denotes the optimal total tardiness. Note that (4.2) is always defined since
g* ≥ 0, implying that gA > 0 when gA > g*. The quantity π*(A) represents the difference
between gA and g* expressed as a percentage of gA. When BB stops normally, g* = gBB,
so one can obtain π*(A). Table 11 uses π*(GA) to evaluate how close GA is to optimality
on the set of test problems where BB stops normally.

Comparing LH with NEH, Table 6 reports on the mean and standard deviation of,
π(NEH, LH), the percentage advantage of NEH over LH versus n, while Table 7 reports
on the percentage of cases where gLH < gNEH versus n. These tables indicate that the
solution quality under NEH tends to be much worse that under LH. For instance, when
n = 60, the mean value of π(NEH) equals -37.2, i.e., on the average gNEH is 37.2% larger
than gLH; furthermore, gLH < gNEH in 89.0 % of the cases. To verify that the differences
between LH and NEH in Tables 6 and 7 also hold for large n, we generated additional
test problems for n = 180, 240, and 300, using the same scheme as before, and got
results similar to those for n = 120. These results suggest LH is a more appropriate
benchmark than NEH when evaluating algorithms.

Table 8 compares BB with the LH by reporting in the mean and standard deviation
of π(BB, LH) versus n and M. Similarly, Table 9 compares GA with LH by reporting in
the mean and standard deviation of π(GA, LH) versus n and ρlocs. Notice that GA does
much better than LH for all n tested, while BB does substantially better for small n
only. Indeed, BB does only slightly better than LH when n is large, the mean percentage
advantage equaling 0.5% for n = 60 and 0.03% for n = 120 for the largest M employed.
These small values for large n might be due to BB often stopping prematurely.

Table 10 reports on the percent of cases where GA and BB outperform LH, GA
outperforms BB, and BB outperforms GA for selected values M and for ρlocs = 0 and
0.10. Notice that gGA = gBB for all test problems when n = 10, M = 107 and ρlocs = 0.10.
Since BB is always optimal those problems, GA must also be optimal. The results in
Table 10 are more favorable to BB over LH when when n = 60 or 120 than the results in
Table 8; however, when BB does better than LH, the difference tends to be small. For
example, consider the cases reported in Tables 8 and 10 where n = 120 and M = 4·106.
There, BB outperforms LH in 1.7% of the problems, but the average difference in the
percentage advantage over NEH is only 0.01%.

40 / Chia-Shin Chung, James Flynn, Walter Rom, Piotr Staliński

Journal of Entrepreneurship, Management and Innovation (JEMI), Volume 8, Issue 2, 2012: 26-43

Turn to a comparison of GA and BB. As indicated in the analysis of the various cases
below, our numerical results indicate that BB is better for small n and GA is better for
moderate and large n.

The case n = 10: As mentioned above, BB and LH obtain optimal schedules for all
problems when M = 107 and ρlocs = 0.10; however, BB is the clear winner, since its mean
computation time of 0.01 seconds is far superior to GA's mean computation time of
4.6 seconds. (Both times are acceptable, however.)

The case n = 15: In terms of average solution quality, BB with M = 107 and LH with
ρlocs = 0.10 do equally well, with mean relative advantages over LH of 3.7% in Tables
8 and 9. Nevertheless, GA with a mean time of 8.2 seconds seems to be the winner
over BB with a mean time of 17.5 seconds. On the other hand, BB can obtain optimal
solutions for all test problems (with, however, an increase in the mean time to 57.7
seconds and only a 0.1% improvement in the mean relative advantage over LH).

The case n = 20. In terms of average solution quality and computation time, GA
with ρlocs = 0.10 does better than BB for any of the M values tested, i.e., the mean
values of π(GA, LH) in Table 9 are greater than the mean values of π(BB, LH) in Table 8,
and the mean times for BB in Table 4 are greater than the mean times for GA in Table 5.

The case n ≥ 30. In terms of average solution quality and computation time, GA
with ρlocs = 0.01 does much better than BB for any of the M values tested. Furthermore,
for n ≥ 60, the mean values of π(BB, LH) are close to 0 and BB never outperforms GA
when ρlocs = 0.10 (see Tables 8 and 10).

Table 11 reports on the percent of test problems where BB stops normally versus
n, and the mean and standard deviation of π*(GA), the percentage advantage of an
optimal solution over GA, versus n and ρlocs. In order to maximize the number of
problems where BB stops normally and thus g* is available, Table 11 utilizes the largest
value of M employed by BB. For n = 10 and 20, all problems are solved to optimality
by BB, and GA is almost as good as BB when ρlocs ≥ 0.01. For n = 20, 63.7% of the
problems are solved to optimality, and the average solution quality of GA is good for
ρlocs = 0.01 and outstanding for ρlocs ≥ 0.10. Finally, for n ≥ 30, between 10% and 17%
of the problems are solved to optimality by BB and GA is almost as good BB for such
problems when ρlocs ≥ 0.01. For problems where n ≥ 30 and BB stops prematurely, the
superior performance of GA indicates that on the average BB is not close to optimality;
however, the average closeness of GA to optimality is unknown.

The parameter ρlocs strongly affects the computation time and the solution quality
of GA. One of our more interesting findings is that small values of ρlocs are effective in
trading-off computation time and solution quality. Tables 5 and 9 perform a sensitivity
analysis on ρlocs that examines computation time and the solution quality of GA for ρlocs
= 0, 0.01, 0.10, and 1. As expected, both computation time and solution quality tend to
increase with ρlocs. The data suggest that ρlocs = 0.01 and ρlocs = 0.10 are effective choices.

Incidentally, the entries for n = 120 and ρlocs = 1 are missing from Tables 5 and 9.
A sample of over 100 test problems found that increasing ρlocs from 0.10 to 1 when
n = 120 increased the mean of ρ(GA, LH) by under 0.5%, while greatly increasing

41
A Genetic Algorithm to Minimize the Total Tardiness

for M-Machine Permutation Flowshop Problems /

Journal of Entrepreneurship, Management and Innovation (JEMI), Volume 8, Issue 2, 2012: 26-43

computation times. (Many test problems took over 24 hours to solve.) Also, observe
that in the row for n = 10 of Table 9, the mean of ρ(GA, LH) is smaller for ρlocs = 0.01 than
for ρlocs = 0, illustrating that ρ(GA, LH) is not always a nondecreasing function of ρlocs.

Conclusions
The m-machine, n-job, permutation flowshop problem with the total tardiness

objective is a common scheduling problem, known to be NP-hard. Branch and bound,
the usual approach to finding an optimal solution, experiences difficulty when n
exceeds 20. This article fills a gap by providing a solution procedure for problems that
are not solvable by the branch and bound algorithm of Chung et al. 2006, developing
a genetic algorithm, GA, which can handle problems with larger n. GA incorporates
clone removal, two populations with immigration, and probabilistic local search. We
also undertake a numerical study comparing GA with an optimal branch and bound
algorithm BB, and various heuristic algorithms, including the well known NEH algorithm
and a new heuristic LH.

One critical advantage of this article is that the authors had developed the state
of the art optimal algorithm for multi-machine tardiness problems and could use it to
evaluate the performance of their algorithms. Extensive computational experiments
indicate that LH is an effective heuristic and GA can produce noticeable improvements
over LH. Furthermore, GA seems to do a much better job than BB of trading-off
computation time and solution quality for n ≥ 15, and the solution quality under BB is
not noticeably better than under LH for large n. One striking result is that GA appears
to do well for small values of the local search probability.

For future research, we believe that the following topics are potentially useful:
(i) the application of other solution techniques to the problem, e.g., Lagrangean
relaxation and slack variable decomposition; (ii) extending GA to other objectives, e.g.,
total weighted tardiness, total flowtime, total weighted flowtime, and makespan.

References
Armentano, V. and Ronconi, D. (1999). Tabu search for total tardiness minimization in

flowshop scheduling problems. Computers & Operations Research 26, 219-235.
Arroyo, J., and Armentano, V. (2005). Genetic local search for multi-objective flowshop

scheduling problems. European Journal of Operational Research 167, 717-738.
Chung, C.S., Flynn, J., and Kirca, O. (2002). A branch and bound algorithm to minimize

the total flowtime for m-machine permutation flowshop problems. International
Journal of Production Economics 79, 185-196.

Chung, C.S., Flynn, J., and Kirca, O. (2006). A branch and bound algorithm to minimize
the total tardiness for m-machine permutation flowshop problems. European
Journal of Operational Research, 174, 1-10.

Etiler, O., Toklu, B., Atak, M., and Wilson, J. (2004). A genetic algorithm for flow shop
scheduling problems. Journal of the Operational Research Society 55, 830-835.

42 / Chia-Shin Chung, James Flynn, Walter Rom, Piotr Staliński

Journal of Entrepreneurship, Management and Innovation (JEMI), Volume 8, Issue 2, 2012: 26-43

Framinan, J., Leisten, R., and Ruiz-Usano (2005). Comparison of heuristics for flowtime
minimization in permutation flowshops. Computers & Operations Research 32,
1237-1254.

Holland, H. (1975). Adaptation in Natural and Artificial Systems, University of Michigan
Press, Ann Arbor.

Kim, Y.D. (1993). Heuristics for Flowshop Scheduling Problems Minimizing Mean
Tardiness. J. Operational Research Society 44, 19-28.

Kim, Y.D. (1995). Minimizing tardiness in permutation flowshops. European Journal of
Operational Research 85, 541-555.

Koulamas, C. (1994). The total tardiness problem: review and extensions. Operations
Research 42, 1025-1040.

Lawler, E. (1997). A pseudopolynomial algorithm for sequencing jobs to minimize total
tardiness. Annals of Discrete Mathematics 1, 331-342.

Nawaz, M. ,Enscore, E., and Ham, I. (1983). A heuristic algorithm for the m-machine,
n-job flowshop scheduling problem, OMEGA 11, 91-95.

Ombuki, B., and Ventresca, M. (2004). Local search genetic algorithms for the job shop
scheduling problem. Applied Intelligence 21, 99–109.

Pinedo, M. (2002). Scheduling, 2nd Edition, Prentice-Hall, New Jersey.
Potts, C., and Wassenhove, L. (1982). A decomposition algorithm for the single machine

total tardiness problem. Operations Research Letters 1, 177-181.
Press, W., Teukolsky, S., Vetterling, W., and Flannery, B. (1992). Numerical Recipes in C

: The Art of Scientific Computing, 2nd ed., Cambridge University Press, Cambridge.
Reeves, C. (1997). Genetic Algorithms for the Operations Researcher. INFORMS Journal

on Computing 9, 231-250.
Ruiz, R., and Maroto, C. (2005). A comprehensive review and evaluation of permutation

flowshop heuristics. European Journal of Operational Research 165, 479-494
Szwarc, W. (1993). Single machine total tardiness problem revisited, in Y. Ijiri (ed.).

Creative and Innovative Approaches to the Science of Management, Quorum Books,
407-419.

Szwarc, W., Croce, F., and Grosso, A. (1999). Solution of the single machine total
tardiness problem. Journal of Scheduling 2, 55-71.

Tang, L., and Liu, J. (2002). A modified genetic algorithm for the flow shop sequencing
problem to minimize mean flow time. Journal of Intelligent Manufacturing 13, 61-
67.

Vallada, E., Ruiz, R., and Minella, G. (2008). Minimizing total tardiness in the m-machine
flowshop problem: a review and evaluation of heuristics and metaheuristics.
Computers & Operations Research 35, 1350-1373.

43
A Genetic Algorithm to Minimize the Total Tardiness

for M-Machine Permutation Flowshop Problems /

Journal of Entrepreneurship, Management and Innovation (JEMI), Volume 8, Issue 2, 2012: 26-43

Abstract (in Polish)
Permutacyjny problem przepływowy (ang. permutation flowshop problem) z m maszynami
i n zadaniami oraz minimalizacją sumy opóźnień jest znanym zagadnieniem z zakresu
szeregowania zadań. Zagadnienie to należy do kategorii NP-trudnych problemów
optymalizacji kombinatorycznej. Metoda podziału i ograniczeń (ang. branch and bound),
popularne podejście do rozwiązania problemu, doświadcza trudności (biorąc pod
uwagę czas potrzebny dla znalezienia rozwiązania optymalnego) gdy n przekracza 20.
W niniejszej pracy, proponujemy algorytm genetyczny GA dla rozwiązywania zagadnienia
dla dużych wartości n. Przytaczamy wyniki obszernego studium obliczeniowego, które
porównuje fukcjonowanie algorytmu GA z metodą podziału i ograniczeń oraz metodami
heurystycznymi - znanym algorytmem NEH i heurystyką lokalnego przeszukiwania
LH. Rezultaty obliczeniowe wskazują, że metoda LH jest wydajnym algorytmem
heurystycznym i że metoda GA oferuje możliwość poprawy wyników w porównaniu
z algorytmem LH.
Słowa kluczowe: algorytm genetyczny, planowanie, permutacja, opóźnienia.

