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Abstract. Variable-length word codes, i.e., sets of words such that every
word generated has a unique factorization over the set, are a common
object of study. Tilings, including polyomino tilings, are another research
classic. Here we consider two-dimensional structures, labelled polyomi-
noes (“bricks”), that can be viewed as a natural extension of both words
(or word codes) and polyominoes. We begin with basic definitions and
properties related to codicity, including a two-dimensional version of the
well-known Schützenberger’s theorem. We then continue with decidabil-
ity results, the main one being the undecidability of codicity testing. We
prove that with the polyominoes restricted to squares, the codicity of
small sets (two bricks) is decidable, but 15 bricks are enough to make
the problem undecidable. Thus the frontier between decidability and un-
decidability lies between these two numbers.

1 Introduction

In the paper we consider labelled polyominoes (also called bricks). They are two-
dimensional structures that can be viewed as a natural extension of both words
(or word codes) and polyominoes. An in-depth systematic introduction to the
theory of codes can be found in [3], whilst [1, 4] make a good introductory reading
on polyomino tilings. Beginning with basic definitions and properties related to
codicity, including a two-dimensional version of the well-known Schützenberger’s
theorem, we continue with decidability results, the main one being the undecid-
ability of codicity testing. We prove that with the polyominoes restricted to
squares, the codicity of small sets (two bricks) is decidable, but 15 bricks are
enough to make the problem undecidable.

Let A be a finite alphabet of labels. A labelled polyomino (or a brick) is a
partial mapping k : Z2 → A, where dom k is finite and connected. D ⊆ Z2

is connected if for every pair of points (x, y), (x′, y′) ∈ D there exists a path
(x0, y0), (x1, y1), ..., (xn, yn) ∈ D such that (x0, y0) = (x, y), (xn, yn) = (x′, y′)
and |xi+1 − xi|+ |yi+1 − yi| = 1 for i = 0, 1, ..., n− 1.

Note that a brick can be viewed as a polyomino with its cells labelled with
the symbols of A. If |A| = 1, there is an obvious natural correspondence between
bricks and polyominoes. The set of all bricks over A is denoted by A./.



Given a set of bricks X ⊆ A./, the set of all bricks tilable with (translated
copies of) the elements of X is denoted by X./. Note that we do not allow
rotations of bricks. X ⊆ A./ is a brick code, if every element of X./ admits
exactly one tiling with the elements of X.

More formally, given a brick k and a vector u = (xu, yu) ∈ Z2, the translation
of k is the brick k′ = uk such that dom k′ = (xu, yu) + dom k and k′(x, y) =
k(x − xu, y − yu). Now for k ∈ X./, a factorization of k over X is a family
{(ui, ki)}i=1,...,n such that k =

⋃i=n
i=1 uiki, with all dom uiki pairwise disjoint.

X is a brick code, if for each k ∈ X./ there is exactly one factorization of k
over X. In this context, a factorization is also called a tiling.

The effective alphabet of X ⊆ A./ is the set of all symbols that appear on
bricks in X, i.e.,

⋃
k∈X k(dom k). If k ∈ A./ is a square brick, then by len k we

denote the edge length of k, i.e.,
√
|dom k|.

Given a rectangular brick t ∈ A./, by t p×q we denote a brick obtained by
stacking together p copies of t vertically, and then q copies of this compound
horizontally.

We use the following pictorial representation of bricks. Each point of the
domain, (x, y) ∈ dom k, is drawn as a square [x, x + 1] × [y, y + 1] ⊆ R2. The
label k((x, y)) appears inside the square. Since we usually consider bricks up to
translation, we do not mark the absolute coordinates.

Example 1. Let k1, k2, k3 ∈ {a, b}./. Now define:

– dom k1 = {(0, 0)} and k1((0, 0)) = a
– dom k2 = {(0, 0), (1, 0), (2, 0), (0, 1), (2, 1)} and k2((0, 1)) = k2((2, 0)) = a

and k2((0, 0)) = k2((1, 0)) = k2((2, 1)) = b
– dom k3 = {(0, 0), (1, 0), (1,−1), (1, 1)} and k3((1,−1)) = k3((1, 1)) = a and

k3((0, 0)) = k3((1, 0)) = b.

The representation of k1, k2 and k3 is shown below.

k1: a k2:
a b
b b a k3:

a
b b

a

2 Brick codes

Proposition 1. X ⊆ A./ is a brick code iff every finite subset of X is a brick
code.

Proof. The “only if” part is obvious. If X is not a brick code, then there exists a
brick with two different factorizations, each of them containing a finite number
of bricks. Taking these bricks, we obtain a finite subset of X which is not a
code. ut

Proposition 2. Let |A| = n ≥ 2 and let B = {a, b}. There exists a mapping
f : A./ → B./ such that for any set of bricks X ⊆ A./ we have: X is a brick
code (over A) iff f(X) is a brick code (over B).



Proof. Take m = dlog2 ne and note that there are at least n different 1 × m
rectangular bricks over B; these are essentially binary numbers 0...n − 1. The
numbers can be used to identify the letters of A. Now f is constructed in such
a way that each point of A./ is mapped to a 1 ×m rectangle labelled with an
appropriate number. It is easily seen that f preserves the codicity. ut

The above property allows simulating an arbitrarily large alphabet with a
two-letter set. Actually, shapes alone (i.e., a single-letter alphabet) are sufficient
for the simulation.

Proposition 3. For any mapping π : A → B and a set X ⊆ A./, if π(X) is a
code, X is also a code.

Proof. Assume that X ∈ A./ is not a code. Then there exists k ∈ X./ with two
different factorizations: k =

⋃i=n
i=1 uixi =

⋃j=m
j=1 vjyj . Consider k′ = π(k) ∈ B./.

Obviously, k′ =
⋃i=n

i=1 uiπ(xi) =
⋃j=m

j=1 vjπ(yj). Now we claim that these two
factorizations of k′ are different. If they are not, then n = m and ui = vi,
π(xi) = π(yi) for i = 1, ..., n. Consequently, the only way in which the original
factorizations of k can be different is to have different labellings. But the labelling
is determined by k itself. Thus we have two different factorizations of k′, and
π(X) is not a code. ut

This property can be interpreted as follows: if π(X) contains enough infor-
mation to determine the factorization of every brick from π(X)./, then there is
certainly enough information in X itself to find the factorization of every brick
from X./. The converse does not usually hold, of course.

Let π : A→ {b} and let X ⊆ A./ be a code. We say that X is a shape code, if
|π(X)| = |X| and π(X) is a code. In other words, X is a shape code if it remains
a code regardless of the labelling of the bricks.

Example 2. The set X depicted below is a code over A = {a, b}. Taking π : A→
{b}, we obtain π(X) which is not a code.

X: a b
b
b

π(X): b b
b
b

2.1 Uniform sets

A set X ⊆ A./ is called uniform, if all its elements have identical shape, i.e.,
∀k, l ∈ X : dom k = dom l. X is additionally called full, if it contains all pos-
sible bricks of a given shape. A uniform set is obviously a code. The following
properties reflect the idea of bricks as shapes with added labels.

Proposition 4. Assume that X, Y ⊆ A./ are uniform and let k0 ∈ X, l0 ∈ Y .
If {k0, l0} is a shape code then {k, l} is a shape code for any k ∈ X, l ∈ Y, and
X ∪ Y is a code.



Proof. Let π be a mapping π : A → {b} and let m ∈ (X ∪ Y )./. Denote m′ =
π(m), k′ = π(k0) and l′ = π(l0). Then k′ = π(k) for any k ∈ X and l′ = π(l) for
any l ∈ Y since X, Y are uniform. Consequently, m′ ∈ {k′, l′}./. Since {k′, l′} is
a code, there is a unique factorization of m′ into k′ and l′. Both sets X, Y are
uniform, so now we can reconstruct the labelling of m. Thus X∪Y is a code. ut

Proposition 5. Assume that X, Y ⊆ A./ are uniform and full, X 6= Y . If X∪Y
is a code, then {k, l} is a shape code for any k ∈ X, l ∈ Y .

Proof. Let π be a mapping as above. Assume that {k, l} is not a shape code for
some k ∈ X, l ∈ Y . Then there exists m′ ∈ {k′, l′}./ such that m′ =

⋃
uix

′
i =⋃

viy
′
i with x′i, y

′
i ∈ {k′, l′}. Now, label m′ arbitrarily. As X, Y are full, we can

reconstruct labels for xi, yi ∈ X ∪ Y . We have m =
⋃

uixi =
⋃

viyi so X ∪ Y is
not a code. ut

Example 3. Consider a full uniform set X ⊆ {a, b}./ containing bricks with
dom k = {(0, 0), (1, 0), (0, 1)} and Y containing a single element l with dom l =
{(0, 1), (1, 0), (1, 1)}. X ∪ Y is a code, but {k, l} (for any k ∈ X) is not a shape
code.

X:
a
a a ...

b
b b Y:

a a
b

2.2 Two-element sets of dominoes

Testing whether a given set X ∈ A./ is a brick code is undecidable in the general
case (see next Section). Below we present a simple case of a two-element set of
domino-shaped bricks.

Theorem 1. Let X contain two domino-shaped bricks, k1 with dom k1 =
{(0, 0), (0, 1)} (vertical domino) and k2 with dom k2 = {0, 1, ..., p− 1} × {(0, 0)}
(horizontal domino of length p ≥ 1). Then X is a code iff |alph(X)| > 1.

Proof. Certainly, if |alph(X)| = 1 then X is not a code (in other words, X is
not a shape code). A double factorization can be constructed e.g. for a 2 × p
rectangle by taking either p vertical dominoes or two horizontal ones (cf. [1]).

To prove the converse it suffices to show that X is a code for any labelling
that gives |alph(X)| = 2, since being a code with |alph(X)| = 2 implies being
a code for any labelling with |alph(X)| > 2. Indeed, suppose that this has been
proven and take alph(X) = {a1, a2, ..., an} (n ≥ 2). Consider the projection
π : {a1, a2, ..., an} → {a, b} with π(a1) = a and π(ai) = b for i = 2, ..., n. As
π(X) is a code, X is also a code.

Now assume that alph(X) = {a, b} and consider the following cases, together
with all symmetries:

– alph(k1) = a, and alph(k2) = b or alph(k2) = {a, b}: The position of k2 can
always be determined by finding the label b, thus X is a code. Note that the
assumption on the shape of the bricks is not important in this case.



– alph(k1) = {a, b} and alph(k2) = {a, b}: Let p = 2, i.e., the horizontal
domino k2 has length 2; bricks with p > 2 can be dealt with in a similar way.
Without loss of generality we can assume that X is as follows:

k1:
a
b

k2: a b

Assume that X is not a code, so there exists a brick with two different
decompositions. We can take minimal decompositions, in the sense that they
do not contain superfluous elements (ui, xi), (vj , yj) such that uixi = vjyj .
Call the decompositions D1 and D2. One of them, e.g., D1, must contain k1.
Then D2 has to have a brick or bricks which “cover it up.” None of them
can be k1, since k1 cannot overlap itself; thus k1 in D1 is covered by k2’s in
D2. But this requires two k2 bricks placed as shown below.

a b
a b

Now we see that D1 has to contain k1 once again, extending the staircase-like
shape e.g. to the left. Continuing in this way, we obtain an infinite sequence
of steps, which contradicts the existence of a brick with two decompositions.

ut

2.3 Maximal and complete brick codes

A code X ⊆ A./ is maximal over A, if it is not properly contained in any other
code from A./, i.e., for any code Y ⊆ A./, X ⊆ Y implies X = Y . Any code
X ⊆ A./ is contained in some maximal code from A./. The proof of the analogous
property for word codes (which uses the Zorn’s Lemma to show that any set of
codes contains a maximal element; see [3]) can be applied to brick codes as well.

For any set X ⊆ A./ we define the set of factors of X as F (X) = {k ∈
A./ | ∃l1, l2, ..., ln ∈ A./ : k ∪

⋃n
i=1 li ∈ X}. In other words, k is a factor of X if

it can be embedded in some brick from the set X. A set X ⊆ A./ is complete, if
F (X./) = A./.

A basic theorem of the theory of codes (a part of the Schützenberger’s theo-
rem, [16]) says that any maximal code is complete. We will prove a brick equiv-
alent.

Two bricks k, l ∈ A./ are compatible, if they are equal on the intersection of
their domains, i.e., k|dom k ∩ dom l = l|dom k ∩ dom l.

A brick k ∈ A./ is self-overlapping, if there exists a vector u 6= (0, 0) such
that k and uk are compatible and dom k ∩ dom uk 6= ∅. A brick which is not
self-overlapping is called non-overlapping.

Lemma 1. Assume that |A| > 1. For any k ∈ A./, there exists l ∈ A./ such
that k ∪ l is non-overlapping.

Proof. Assume that a, b ∈ A. Note that the following brick, named D4, is non-
overlapping:



a b b a
b a a a
a b b b
b b b b

More formally,

– dom D4 = I4 × I4

– points labelled with a: D−1
4 ({a}) = {(0, 1), (1, 2), (2, 2), (3, 2), (0, 3), (3, 3)}

– points labelled with b: D−1
4 ({b}) = (dom D4) \D−1

4 ({a}).

Furthermore, an arbitrarily large non-overlapping brick can be constructed with
the aid of the following induction: use D4 as a 4×4 pattern and stack together 16
bricks by putting D4 where the pattern has the label a, and B4 where the label
is b (Bm denotes an m×m brick labelled uniformly with b’s). We obtain D42 in
this way. By induction, D4n+1 is constructed in the same way, by stacking D4n

and B4n . It is easy to verify that the bricks D4n (n ≥ 1) are non-overlapping.
Assume by contradiction that D4n is self-overlapping for some n ≥ 1. Then

there exists a vector u 6= (0, 0) such that D4n and uD4n are compatible and
dom D4n ∩ dom uD4n 6= ∅. Let m = max{n | ∃p, q ∈ Z : u = (p4n, q4n)}; notice
that m < n. If m = n − 1, we have a “top-level pattern collision:” one of the
D4n−1 fields coincides with a B4n−1 field. But this implies that the pattern D4

is self-overlapping, which is false. If m < n − 1, we have a similar collision at a
lower level.

Now take any k ∈ A./. If k is non-overlapping, we have nothing to do. Embed
k in the smallest possible 4n×4n square by surrounding it with b’s. If the square
is now non-overlapping, we are done. Otherwise, take D4n and put it e.g. atop
the square. Again it can be easily verified that this procedure leads to a non-
overlapping brick containing the factor k. ut

Theorem 2. Assume |A| > 1. Any maximal brick code over A is complete.

Proof. Assume that X ⊆ A./ is not complete, i.e., F (X./) 6= A./. Take k ∈
A./ \ F (X./). If k is self-overlapping, use the above Lemma to replace it with
k′ = k ∪ l which is non-overlapping; certainly, k′ is not a factor of X./ then.

Now we claim that X∪{k′} is a code. If not, there exists a (minimal) brick in
(X ∪ {k′})./ with two different factorizations, both of them containing k′. Since
k′ is non-overlapping, this implies that k′ is composed of factors of X./. Thus k′

is itself a factor of X./. Hence X ∪ {k′} is a code and X is not maximal. ut

2.4 Infix sets and codes

There is no natural brick extension of the symmetrical notions of prefixity and
suffixity. However, we can define the notion of infixity which is an extension of
word infixity as given in e.g. [5, 17].

We say that a set X ⊆ A./ is infix, if ∀k, l ∈ X, k 6= l ¬∃u : (u + dom k) ⊆
dom l and uk, l are compatible. That is, no brick is a “subbrick” of another,



or—in terms of factors—∀k ∈ X : F ({k}) ∩X = {k}. A set X ⊆ A./ is strictly
infix, if ∀k, l ∈ X, k 6= l ¬∃u : uk, l are compatible. This means that no two
bricks in X overlap. Note that an infix set is not necessarily a code. However, a
set that is strictly infix is clearly a code.

Example 4. The following set is infix but is not a code.

b b
b
b

Example 5. The following set is a code which is neither infix, nor a shape code.

a b
b a

b

We now have a classification of brick sets which is depicted in the diagram
below. Note that all inclusions are strict.

Proposition 6.

Brick codes
Infix sets
Strictly infix sets

Shape codes

3 Brick code decidability

The problem of whether a given set of bricks (even polyominoes) is a code
is undecidable in general. We prove this by reduction from the Wang tilabilty
problem (cf. [2, 14]). The problem is open for two-element sets. We then consider
sets consisting of square bricks only. We show that in this setting, the codicity
of small sets (two bricks) is decidable, but 15 bricks are enough to make the
problem undecidable.

Note that the codicity problem is trivially decidable if the squares use just
one label, i.e., when they are effectively polyominoes. Only singleton sets are
codes then. Thus in the sequel we consider sets of square bricks with an effective
alphabet of at least two symbols.

Also note that apart from the single-label case, the decidability of sets of
squares does not depend on the size of the effective alphabet, since a larger
alphabet can be “simulated” with two symbols at the expense of the size of the
squares. When arbitrary shapes are considered, shapes can be used to simulate
labels, thus making brick decidability equivalent to polyomino decidability.



3.1 The general case

Theorem 3. It is undecidable whether X ⊆ A./ is a code.

Proof. We construct a reduction from the Wang tilability problem which is
known to be undecidable.

A Wang tile is a quadruple (a, b, c, d), where a, b, c, d belong to a given set of
colours. Let T be a set of Wang tiles over the colours C∪{β}, where β denotes a
“blank” colour. Assume that T does not contain the blank tile, i.e., (β, β, β, β).
We construct a set of bricks X (over an appropriate alphabet) such that a finite
tiling over T exists iff X is not a code.

Take two copies of the colour set C: CH (“horizontal colours”) and CV (“ver-
tical colours”). For c ∈ C, cH denotes the corresponding element of CH , and cV

is the element of CV . Define A = CH ∪ CV ∪ {β}.
Each tile t = (a, b, c, d) ∈ T is mapped into a 5× 5 brick t′:

aV

dH bH

cV

The set of all bricks resulting from the mapping of tiles in T is denoted by T ′.
Now define “shape constructors” K. It contains all 5 × 5 bricks over {β},

with at least one of the edge mid-points removed, i.e., K = {s ∈ {β}./ | dom s =
{0, 1, 2, 3, 4}2 \ P, P ∈ P({(2, 4), (4, 2), (2, 0), (0, 2)}), P 6= ∅}. For instance:

We still need “horizontal links”, LH , and “vertical links”, LV . Horizontal
links are 1× 2 dominoes labelled uniformly with all available horizontal colours.
Similarly, vertical links are 2× 1 dominoes labelled with vertical colours.

LH : aH aH bH bH ... LV :
aV

aV

bV

bV
...

Define X = T ′ ∪ K ∪ LH ∪ LV . Assume now that T admits a finite tiling.
Consider two adjacent tiles, t1 and t2, with a common edge labelled with cH/V .
This can be modelled with the bricks in X in two ways: either t′1, t

′
2 ∈ T ′ or two

shape constructors with a cH/V link can be used. If a non-blank tile t is adjacent
to a blank tile, t′ has a blank edge which is modelled by a shape constructor
with no “cave” at the corresponding edge. Blank tiles are not represented in
the brick model, thus the model is finite. An example of two factorizations of
adjacent tiles is shown below.



a

d b

c

e

b

← b b →

Conversely, if a brick admits two factorizations over X, it models some tiling
over T . Thus, a finite tiling over T exists iff X is not a code. ut

3.2 The case of two square bricks

We now consider sets consisting of just two bricks, each of them being a square
(in the geometrical sense). We show that there exists a simple algorithm to verify
whether a given set of this kind is a brick code.

Theorem 4. Let X = {k, l} ⊆ A./, where dom k and dom l are squares, k 6= l.
Then X is not a brick code iff k and l have a common rectangular tiler, i.e.,
there exists a rectangle t ∈ A./ such that k, l ∈ {t}./.

Proof. The “if” part is obvious. Now, if |dom k| = |dom l|, then k and l have
identical shape and differ in their labelling, so X is obviously a code with no
common tiler for k and l. Thus we are left with the case, e.g., |dom k| < |dom l|.

Assume that X is not a brick code. There exists y ∈ X./ such that y admits
two different tilings with the elements of X.

Take the leftmost cell in the uppermost row of y. If both tilings use the
same square x ∈ {k, l} to cover this cell, then remove x from y and repeat this
procedure until y′ is obtained such that the two tilings place different squares in
the leftmost cell in the uppermost row of y′. In other words, we take y to be a
minimal brick admitting two tilings over X. Call the tilings Tk and Tl, according
to the square being used to cover the cell specified above.

Now this implies that k tiles the top-left corner of l. Moving rightwards
along the top edge of l, we observe that when Tk covers the remaining part of l,
it cannot place a tile higher than the top edge of l, since we have started in the
uppermost row. Thus the next tile to the right of k has to be aligned along the
top edge. Since we already know that l contains a copy of k in its top-left corner,
we have another copy of k “along the way” (although l may have actually been
used). Continuing in this way, we observe that the two tilings will eventually
arrive at a common right edge when they reach the lowest common multiple of
the edge lengths of k and l.



k1 ... kn k1 ... ki ki+1 ki+2 ... kn

k1 ... kn k1 ... ki k1 k2 ... kn−i

Considering the situation to the right of the first copy of l in Tl and denoting
the columns of k by k1, k2, ..., kn we obtain k1 = ki+1, k2 = ki+2, ..., kn−i = kn

where i = (len l)mod(len k) (cf. figure above). If i = 0, then len k is the width of
the common tiler. Otherwise this width is equal to i.

The above argument can be repeated in vertical direction, thus giving a
square that can be tiled with k or with l. The size of the square will be the
lowest common multiple of the sizes of k and l. ut

Note that the proof becomes trivial if the effective alphabet of X is just
one symbol, since X is never a code then with, e.g., the unit square being the
common tiler for k and l

Example 6. Consider X = {k, l} containing two bricks depicted below. They
have a common tiler t, hence X is not a code.

b b b b
a b a b
b b b b
a b a b

b b b b b b
a b a b a b
b b b b b b
a b a b a b
b b b b b b
a b a b a b

t =
b b
a b

Proposition 7. If k, l ∈ A./ have a common rectangular tiler, then they have a
common square tiler.

Proof. Assume that k, l ∈ {t}./, where t is a rectangle of size p× q. Let r be the
lowest common multiple of p and q. Both len k and len l have to be multiples
of r. Hence, t(r/p)×(r/q) can be taken as the common square tiler. ut

Corollary 1. Let X = {k, l} ⊆ A./, where dom k and dom l are squares. It is
decidable whether X is a brick code.

3.3 The case of 15 square bricks

We show that a Thue system can be reduced to a brick code problem with square
bricks. Choosing a small Thue system with an undecidable word problem, we
obtain a set of 15 squares, thus proving that the codicity of a set containing 15
square bricks is undecidable.

There exists a non-erasing Thue system with an undecidable word problem
over a two-letter alphabet with just three relations. This is the smallest example
known to us, due to Matiyasevich [8, 9]. We can encode this system, including



two arbitrary input words v and w, in a set X containing 15 square bricks and
having the following property: v and w are equivalent (in the Thue sense) iff X
is not a brick code. This implies undecidability of the codicity problem for 15
squares.

Consider a finite alphabet Σ and a finite subset S ⊆ Σ∗×Σ∗. The elements
of S are called relations. A Thue system is the pair (Σ, S). For u, v ∈ Σ∗, we
write u ∼S v if there exists a relation (s, t) ∈ S or (t, s) ∈ S such that u = xsy
and v = xty for some x, y ∈ Σ∗. By ≡S we denote the transitive closure of ∼S .
The word problem is: given u, v ∈ Σ∗, does u ≡S v hold?

For a given Thue system (Σ, S) and two words u, v ∈ Σ∗ we construct a set
XS,u,v of square bricks over an alphabet A = Σ∪{?, .} in the way shown below.
Cells which are left blank in the diagrams should be labelled with ?.

– For each relation (s1...sn, t1...tm) ∈ S we draw two bricks. Note that if one
of the words is shorter, it is left-padded with ? symbols:

? ... ? t1 ? ... ? tm

? s1 ? ... ? sn ? ... ? t1 ? ... ? tm

? s1 ? ... ? sn

– For the two words u = u1...ui and v = v1...vj we draw:

? . ? u1 ? ... ? ui

? . ? v1 ? ... ? vj

– For each symbol α ∈ Σ ∪ {.} we draw (“rewriting bricks”):

? α
? α

? α ? ?

? ? ? α

– Finally, we draw an additional square (a “filler”): ?



Theorem 5. Let (Σ, S) be a Thue system and let u, v ∈ Σ∗. Let XS,u,v be the
set constructed as described above. The following equivalence holds: u ≡S v iff
XS,u,v is not a brick code.

Proof. (⇒) We first present a sketch of the proof, and then give the details.
A successful derivation in the Thue system corresponds to a series of bricks,

stacked vertically in layers: one of the input words, bricks corresponding to the
first derivation step, bricks corresponding to the second step, ..., the other input
word. Adjacent bricks have the same labels along level boundaries. Rewriting
bricks are used to shift non-? symbols to the left and to rewrite symbols that
are not changed at each step.

Now note that a tiling described above can also be constructed using the
symbol-rewriting bricks and the filler. This implies non-codicity of the set.

To analyze the details of this construction, consider u ≡S v. Let ω denote
the sequence of symbols ω1 ? ω2 ? ... ? ωn, where ω = ω1ω2...ωn ∈ Σ∗. Using the
Thue derivation, we construct a shape as follows:

1. Initial lines are the brick corresponding to u:

? . ? u

2. If the derivation includes u′ ∼S u′′, there exists a relation (s, t) such that
u′ = xsy and u′′ = xty. Consider the cases:
– If |s| = |t|, a brick is added as follows:

? . ? x ? s ? y

? . ? x ? s ? y
? . ? x ? t ? y

– If |s| < |t|, ? symbols have to be added before a brick that corresponds
to (s, t):

? . ? x ? ... ? s ? y

? . ? x ? ... ? s ? y
? . ? x
? . ? x
? . ? x ? t

? y

? y
? y

? . ? x ? s ? y

? ? ? .

? . ? ?

? ? ? x

? x ? ?
...



– If |s| > |t|, a brick is added in a similar way but ? symbols are removed
afterwards.

Note that in each case after a brick corresponding to (s, t) is added, the
bottom row corresponds to u′′.

3. If the bottom row corresponds to v, the construction is complete:

? . ? v
? . ? v

Another tiling for the shape being constructed can be made with the rewriting
bricks and the filler (cf. Example 7).

(⇐) If u ≡S v does not hold, there is no word u′ such that u′ ∼S v, and
consequently it is not possible the complete the construction as in case 3. ut

Note that the reduction works even if the Thue system is erasing. A semi-
Thue system could also be used with a minor modification (no symmetrical
relation bricks). Matiyasevich and Sénizergues give an example of a semi-Thue
system over a three-letter alphabet with three relations that has, e.g., un unde-
cidable individual accessibility problem (see [10]). This leads to a similar result.

Example 7. The Thue system of Matiyasevich contains a relation of considerable
length; thus it is not well-suited as an example. To clarify the idea of the Thue-
to-brick reduction, we present a Thue system with short relations. Let S =
{(ab, b), (aa, bb), (aa, a)}. We ask whether bab ≡S a. The obvious answer is yes,
thus the set of bricks X for this Thue system is not a code.

The set X consists of the following bricks:

– bricks corresponding to the rules:

? ? ? b
? ? ? ?
? ? ? ?
? a ? b

? a ? b
? ? ? ?
? ? ? ?
? ? ? b

? b ? b
? ? ? ?
? ? ? ?
? a ? a

? a ? a
? ? ? ?
? ? ? ?
? b ? b

? ? ? a
? ? ? ?
? ? ? ?
? a ? a ? ? ? a

? ? ? ?
? ? ? ?
? a ? a

– bricks corresponding to the input words:

? . ? b ? a ? b
? ? ? ? ? ? ? ?
? ? ? ? ? ? ? ?
? ? ? ? ? ? ? ?
? ? ? ? ? ? ? ?
? ? ? ? ? ? ? ?
? ? ? ? ? ? ? ?
? ? ? ? ? ? ? ?

? ? ? ?
? ? ? ?
? ? ? ?

? . ? a



– rewriting bricks and the filler:

? a
? a

? b
? b

? .
? .

? a ? ?
? ? ? ?
? ? ? ?
? ? ? a

? b ? ?
? ? ? ?
? ? ? ?
? ? ? b

? . ? ?
? ? ? ?
? ? ? ?
? ? ? .

?

The following derivation corresponds to a tiling shown in Fig. 1. Underlined
subwords are the ones being substituted at each step.

bab ∼S bb ∼S aa ∼S a

? . ? a

? .
? .

? .
? . ? ? ? a

? a ? ?

? .
? .

? .
? .

? ? ? a

? a ? a

? .
? .

? .
? .

? a ? a

? b ? b

? .
? .

? b
? b

? .
? .

? b
? b ? ? ? b

? b ? ?

? .
? .

? b
? b

? .
? .

? b
? b ? a ? b

? ? ? b

? . ? b ? a ? b

? .
? .

? a
? a

? .
? .
? .
? .

? a
? a

? .
? .
? .
? .

? a
? a

? a
? a

? .
? .
? .
? .

? b
? b

? b
? b

? .
? .

? b
? b

? .
? .

? b
? b

? b
? b

? .
? .

? b
? b

? .
? .

? b
? b

? a
? a

? b
? b

Fig. 1. Tilings corresponding to bab ∼S bb ∼S aa ∼S a



Corollary 2. The codicity problem for sets containing 15 or more square bricks
is undecidable.

Proof. The reduction of a Thue system with three relations over a two-letter
alphabet produces six bricks corresponding to the relations, two corresponding
to the input words, six rewriting ones, and the filler. ut
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