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ABSTRACT 

 
Two modifications to the Hill Crunching Clustered Genetic Search (HC-CGS) 

algorithm are proposed in  this paper. HC-CGS (see [Telega 1999], [Adamska et al. 
2004] is a global optimization algorithm that was designed in order to solve such 
parameter inverse problems in which an approximation of certain level sets (central 
parts of basins of attractions of local minimizers) is required. The approximation of 
these sets can be useful when some additional criteria of optimization are considered 
after main results of parameter identification are obtained. The approximation is also 
helpful in stability analysis. In spite of some good properties of HC-CGS, tests have 
shown that its original version can be not effective for problems with more than 4 
dimensions. 

Two modifications of HC-CGS are proposed in order to overcome the 
dimensionality limitation. In the first one clusters are remembered as ellipsoids. The 
first modification is based on the idea of cluster recognition with the use of Kohonen 
Self Organizing Maps (SOM) neural networks [Kaski 1997]. In the second one clusters 
are remembered as ellipsoids. 

 
 

INTRODUCTION 
 
Many global optimization methods are aimed at finding a single local minimizer or 

the global minimizer. One can consider analogous maximization tasks. However, in 
many problems there is a need to look for all local minimizers or such minimizers 
which fulfill additional criteria. Parameter inverse problems are classical examples.  

HC-CGS algorithm that is considered in this paper has been originally designed for 
parameter inverse problems that were formulated as global optimization tasks (see 
[Telega 2000, AST2004]. This algorithm is especially suitable for problems, in which 
an approximation of certain level sets (central parts of basins of attractions of local 
minimizers) is required. The approximation of these sets can be useful when additional 
criteria of optimization are considered after main results of parameter identification are 
obtained. Such criteria can express in some way for instance the availability and/or the 



cost of materials. When one knows approximation of central parts of the basins, he or 
she can give an approximate answer to the question: how much one can change the 
value of a parameter with �not too high� change of the objective. 

The HC-CGS strategy is inspired with clustering methods in global optimization 
[Rinnooy Kan, Timmer 1987a & b] and genetic algorithms [Vose 1999], [Goldberg 
1989]. 

Generally, cluster analysis includes a specific group of pattern recognition methods 
(see [Jain et al.]). It consists in unsupervised exploration of a given data set, aimed at 
discovering groups in the data. Clustering results of partitioning of a discrete data set 

{ }mxxX ,...,1=  into nonempty mutually exclusive sets kXX ,...,1 , mk ≤  called 
clusters. Clustering algorithms has been also proposed in continuous global 
optimization. The idea is to find groups of points from which local searches can be 
started. It is desirable that the number of local searches is diminished to one in each 
basin of attraction of a local minimum.  

The role of genetic algorithms in clustering has increased for recent years (see 
[Adamska et al. 2004] and articles cited there). In most papers the term genetic 
clustering is used for such strategies in which genetic algorithm is used in order to 
determine clusters. In some papers this term is used also for strategies in which genetic 
algorithms are used to generate input data for clustering. In [Adamska et al. 2004] the 
latter strategies have been called Clustered Genetic Search and HC-CGS is a 
representative of this category.  

 
To be more formal let us introduce some terms and give definitions. We focus on 

global minimization problems with continuous objective functions of the form 
ℜ→Φ D: , nD ℜ⊂ , ( ) KxkDx ≤Φ≤∈∀  which have only isolated minimizers in 

the interior of the domain and for which one can construct equivalent maximization 
problems: Φ−−=Φ mM~  (see also [Adamska et al. 2004]).  

Let ( ) ( ){ }yxDxyL ≤Φ∈= :  and ( ) ( ){ }yxDxyL <Φ∈= :�  denote two types of 
level sets of the function Φ . ( )yLx  and ( )yLx

�  stand for simply connected components 

of ( )yL  and ( )yL�  (respectively) that contain x. For an arbitrary fixed point *x  being a 
minimizer of Φ  let ( )*xy  be defined as follows: 
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where D∂  stands for the boundary of the domain. The basin of attraction *xB of a local 

minimizer 
*x  is the simply connected component of the interior of ( )( )*

*
� xyLx  such that 

*
*

xBx ∈  (see also [Rinnooy Kan, Timmer 1987a & b], [Adamska et al. 2004]).  



For global optimization problems that are being considered it is desired that a 
cluster contains such points from the domain that belong to the same basin of attraction. 
By a cluster extension we mean a closed positive measured set that contains one local 
minimizer *x  in its interior and is included in *xB .  

 
 

HILL CRUNCHING CLUSTERED GENETIC SEARCH (HC-CGS) 
 

The aim of the original version of HC-CGS [Telega 1999] is to find all local minima 
that have adequately large basins of attraction with sufficiently large objective variabi-
lity. The algorithm also gives information about basins. HC-CGS utilizes Simple 
Genetic Algorithm (SGA [Goldberg 1989]) as the genetic engine. This choice allowed 
to obtain some theoretical results concerning the stop criterion and asymptotic behavior 
of HC-CGS. 
The idea of HC-CGS is presented in Scheme 1. Initially the set of cluster extensions is 
empty.  
 
REPEAT 
Step 1. Generate initial population (according to the uniform distribution) 
Step 2. Evaluate fitness function f outside already recognized cluster extensions 
Step 3. Modify fitness function (Φ~  := MAX on cluster extensions, where MAX is the minimal 

fitness value that was found) 
Step 4. Produce new generations of SGA until the complex stop criterion is satisfied: 

a) parts of basins (parts of cluster extensions) can be recognized OR 
b) GA recognizes plateau outside known basins (cluster extensions); this means 
that the whole domain has been processed 

Step 5. Recognition of parts of cluster extensions 
Step 6. Update the set of recognized cluster extensions (join parts of cluster extensions) 
 
UNTIL 

the whole domain has been processed OR  
satisfactory set of cluster extensions is found 

 
Scheme 1. The main scheme of HC-CGS 
 
The domain of searches D is divided into hypercubes that constitute a grid. In this 
approach, the cluster extensions are unions of hypercubes. Each cluster extension is 
recognized in a stepwise manner. Each step of this process is performed after the SGA 
is stopped (that means after step 4). Step 5 can be explained as it is shown in Scheme 2. 
 
REPEAT 
Step 5a. Reject hypercubes that contain less individuals than an arbitrary constant. Reject 

individuals that were placed in these hypercubes 
Step 5b. Select the hypercube that contains the best individual as the seed of a new part of a 

cluster extension 
Step 5c. Attach neighboring not rejected hypercubes to this new part of a cluster extension 

Start a rough local optimization method in the new part of a cluster extension 



Step 5d. If this local method stops in the already recognized cluster extension, then attach this 
part to it 

UNTIL 
there are no more unclustered not rejected hypercubes 

 
Scheme 2. Recognizing of cluster extensions in HC-CGS. 
 
The fitness modification results in repelling individuals from cluster extensions (or their 
parts) that are already found. The global stop criterion distinguishes two basic kinds of 
SGA behavior. The first one is that SGA finds parts of cluster extensions after few 
generations, and the second is that SGA �converges� to the uniform distribution of 
individuals. This corresponds to the recognition of plateau (or areas where the fitness 
has small variability) outside of the already known cluster extensions. Other cases are 
treated as the situation when the SGA does not fit to the particular problem, and a 
refinement of SGA parameters is suggested. 
 
 
PROPERTIES OF HC-CGS 

 
Each population with a finite number of binary coded individuals can be identified 

with a vector which i-th coordinate stands for the occurrence frequency of the i-th 
individual in the population. Lets by r denote the length of an individual. The frequency 
vector belongs to the unit simplex Λ in ℜ r-1. All possible populations of the size n 
correspond to a finite subset Sn in Λ [Vose 1999]. 

SGA with a finite population constitutes a stationary Markov chain with states from 
Sn. By non-zero mutation it is ergodic, and there exists a weak limit 

n
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of probability distributions k
nπ  on Sn in k-th generation (see [Vose 1999]). 

In the case of an infinite population n=∝   SGA is a deterministic dynamic system 
with states in Λ, governed by the genetic search operator G:Λ→Λ. The sequence of the 
limit probability distributions nπ  has a weak limit distribution *π  when the size of 
population goes to infinity n→∝ . Moreover if G is focused, and K stands for the set of 
fixed points of G, then 1)(* =Kπ  [Vose 1999]. 
Let  εF  be the ε-envelope of the set K 

{ }εε <∈∃Λ∈= ),(;; yxdKyxF  

where d is a distance function in ℜ r-1. 
 
Theorem 1 [Cabib et al. 1998]: 000 >∃>∀>∀ Nςε  such that  )(nWNn ∃>∀  and 

)(nWk >∀  ( ) ςπ ε −>1Fk
n . 



It means, that if the population is sufficiently large and a sufficiently large number of 
generations have been evaluated, then the population is arbitrary close to the fixed one 
with the arbitrary large probability. 

 
Stop criteria can be justified with the use of the Vose theory of SGA. We try to 

detect the situation in which the population is sufficiently concentrated in basins so that 
density cluster recognition is possible. The state in which an arbitrary rate of raster cells 
contains the assumed number (much less than the average) of individuals can be 
handled as the local stop criterion. The above situation is  asymptotically highly 
probable if there exists at least one basin of attraction out of the union of cluster 
extensions that are already recognized (see [Schaefer, Jabłoński 2002] and Theorem 3 
in [Adamska et al. 2004]). The chart of the modified fitness function becomes 
sufficiently flat at the end of computations. This corresponds to the unique fixed point 
of G at the center of Λ (see [Vose 1999] Theorem 10.8). If a sufficiently large 
population that starts from the center of Λ (uniform distribution of individuals) does not 
leave its neighborhood sufficiently long, this implies that the center of Λ is the fixed 
point of G (with the arbitrarily large probability). This follows from the Theorem 1 and 
corresponds to the situation that the probability of finding new local minimizers is 
arbitrarily small. 

 
One can say, that there is an analogy between the way in which mutation and 

crossover rates in SGA influences HC-CGS algorithm and the way in which the 
reduction phase influences DC and SL clustering algorithms described in [Rinnooy 
Kan, Timmer 1987a & b]. Both factors cause that some minima can be undetected. 
However, unlike the DC and SL with the reduction phase, the HC-CGS constitutes a 
filter that eliminates local minima with small fitness variability and shallow basins of 
attraction (see tests in [Telega 1999], [Telega 2002]). HC-CGS strategy is also less 
sensitive to fitness values in local minimizers. Such filtering property can be useful in 
some cases. Another interesting feature of HC-CGS is that it should be especially 
convenient for functions with large areas of small variability (areas similar to plateaus) 
which can be difficult for other methods. 

Tests have shown that HC-CGS can be effective in solving some inverse problems 
for instance the problem of optimal pretraction design of a network structure made of 
elastic unconnected fibers fastened at their ends to a square rigid frame ([Telega 1999], 
[Telega 2002]).  

However, the original version of HC-CGS is not effective for problems with more 
than 4 dimensions. This follows from the representation of clusters � they are 
remembered as unions of small hypercubes that constitute a regular grid in the domain 
of searches. 

In order to overcome the above limitation two modifications to the HC-CGS 
algorithm are proposed in this paper. They will be described in following sections. 
 
 



CLUSTERS RECOGNITION AND REPRESENTATION WITH THE USE OF 
NEURAL NETWORKS  

 
There is a need to represent clusters or clusters� extensions found.  We propose to 

use self-organizing maps (SOM�s) ([Kohonen 1995], [Haykin 1999]) so that, when 
joined with the HC-CGS algorithm, high-dimensional input space clusters could be 
represented.   

Self-organizing maps are organized of 2 layers: 
• Input layer which represent vectors of features 
• Output neurons organized in a form of a lattice, usually one- or two-

dimensional, with a neighborhood relation defined (a topographic map) 
Through the process of learning consecutive input vectors of features are passed on 

to neurons in the output layer which behave in a competitive way: only one (the one 
with the highest activation) is activated (a winner-takes-all strategy) and incoming 
synapses weights are modified.  Together with the weight of the winning neuron 
weights of output neurons within the neighborhood are modified too.  Thanks to that 
strategy the spatial location of an output neuron in a topographic map corresponds to a 
particular domain or feature of data drawn from the input space ([Kohonen, 1990]).  
Additionally, activations of neurons which are close by correspond to similar inputs. 

The input data is represented in neurons by a vector wi (reference vector), whose 
components correspond to synaptic weights. Neurons can be indexed with k. The 
winner neuron is determined from the formula: 

( ) { }2minarg i
i

wxxkk −==  

That means the winner is this neuron, whose reference vector is closest to the input 
data x. This neuron and its neighbors modify their reference vectors according do the 
following formula.  

( ) ( ) ( ) ( ) ( )[ ]twtxthtwtw ikiii −+=+1  

Neighbors are determined by so called neighborhood kernel function kih . 
In the simplest case the neighborhood function can be defined as follows: 
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where ri and rj are vectors that represent location of neurons in the lattice, t  denotes 
time and decreases (exponentially with time) during training.  Thanks to that the 
training process constitutes of two phases 

• Ordering phase during which a topological ordering of the neuron nodes are 
organized 



• Convergence phase when output nodes activations are fine tuned 
In such environment two possible choices for input vectors are possible: 
• each function input constitutes the whole SOM input vector � in such case the 

SOM simply finds clusters of data, in this situation the whole input space is 
divided into Voronoi cells (a partition of the space according to the nearest-
neighbor rule so that each cell contains those points from input space that are 
closest to the Voronoi vector, i.e. the reconstruction vector, among all of the 
points), 

• or, preferably, the function data is augmented with information whether the 
point belongs to a minimum found with the HC-CGS algorithm or whether it 
lays outside of any minima known; in such case more patterns which are 
sums of Voronoi cells (in the original input space) corresponding to minima 
basins of attraction are found 

 
After the training process all the output neurons need to be labeled.  In our case they 

would be labeled with each minima identifier, so that afterwards, during actual use, the 
SOM would be able to classify an instance.  If the second input data represenation is 
used, then the user would not know in advance if a point belongs to some minima or not 
(if he knew, then the whole process would be spurious) and would not be able to 
augment the input information as it was described above.  Instead of that, that �minima� 
feature information would be zeroed equal to passing information �not known�.  The 
SOM network is able to distinguish and cluster the input data by other features. 

If the original Kohonen SOM architecture is used, then the number of clusters does 
not need to be known in advance, it only has to be lower then the whole number of 
output neurons (preferably lower than the square root of that number).  On the other 
hand, some extensions of the SOM algorithm are known in which the number of output 
neurons adapts, eg. the growing neural gas or growing grid algorithms [Fritzke 1995].  
Both algorithms start from output layers organized into most simple lattices (either two 
neurons or a 2 by 2 neuron grid) which grow during training up to the moment that 
input points are categorized with sufficiently small error. 

Another architecture possible to use would be to employ the counter-propagation 
network which is an extension of a SOM.  In a counter-propagation network all of the 
SOM output neurons are connected to vector of linear neurons with dimensionalty equal 
to the original function dimensionality, which are trained with a supervised training 
algorithm after training of the SOM is finished.  In that case a simple approximation of 
the original function is possible, in addition to input points classification as in the 
original SOM. 
 
 
CLUSTERS REPRESENTATION WITH THE USE OF ELLIPSOIDS 

 
Onother simpler method that can be proposed to overcome the problem with high 

dimensionality is to represent clusters by ellipsoids. This approach is the theme of the 
current research. The similar approach to clusters in global optimization is known in so 
called Density Clustering (DC) rule described in [Horst et al. 1995]. Some good 



properties of this version of DC are proven in [Rinnooy Kan, Timmer 1987a]. The 
version of DC proposed by Rinnooy Kan and Timmer assumes that the reduction phase 
is applied, that means the initial sample is drawn from the uniform distribution over D 
and all sample points for which the value of the objective function is below certain 
threshold are rejected. A key assumption is that the objective function is well 
approximated by a quadratic function in a neighborhood of a local minimizer. This 
implies that central parts of basins are approximated by ellipsoids. Clusters� extensions 
are recognized iteratively in the following way: the seed point x  of a cluster is the 
result of local optimization started from the unclustered best point of the reduced 
sample (the unclustered point with the smallest value of the objective function). Lets by 
T0 denote the set { x } with the seed of the cluster. In consecutive steps next points of 
the sample are joined to the cluster. These points belong to subsets Ti of D, i=1,2,�, 

,...2,1,1 =⊂ + iTT ii . These subsets correspond to certain level sets. When 2Cf ∈ we can 
approximate level sets by  

( ) ( )( ){ }2| is
T

i rxxxHxxDxT ≤−−∈= , where H denotes hessian. 
All points that are within Ti which is described by a critical distance ( )xri  of the 

seed are joined to the cluster. The distance ( )21 , xxd  is defined as follows: for points 

21 , xx  from a neighborhood of x   

( ) ( ) ( )( )[ ] 2
1

212121 , xxxHxxxxd T −−= ,  
(an approximation of hessian can be obtained as a byproduct of quasi-Newton local 

methods). The parameter ( )xri  is increased stepwisely (with increasing i) until there is 
no unclustered point from the reduced sample within ( )xri . Rinnooy Kan and Timmer 
gave the formula for the critical distance: 
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where Γ  denotes here the Gamma function, m denotes the Lebesgue measure, N is 
the sample size and σ  is a constant. The whole process of sampling, reduction and 
clusters recognition is repeated (k denotes the number of the iteration) until a global 
stop criterion is satisfied. The formula (*) assures that the probability of erroneous 
termination of the cluster recognition procedure (the procedure is terminated too early, 
see [Rinnooy Kan, Timmer 1987a] for details) in step i decreases polynomially fast 
with increasing k.  

This version of DC has also other advantages: 
• It has the property of asymptotic correctness in the sense that it finds global 

minimum with the probability 1 as k increases to infinity. 
• It is possible (and relatively easy) to apply bayesian stopping rules [Horst et al. 

1995], [Rinnooy Ka, Timmer 1987a]. 
The main drawbacks are obvious: 

• The success of the method depends on how well the assumed approximation is. 



• In fact each recognized cluster can contain more than one minimizer. 
 
Applying similar approach to HC-CGS can diminish disadvantages that are caused 

by high dimensionality. Clusters are parametrized by the central point and radiuses. 
Each point generated by SGA can be classified as belonging to some cluster or not, so 
the idea of fitness modification can be almost unchanged. 

However, the Bayesian stopping rules derived for DC cannot be applied directly to 
HC-CGS, because these rules assume uniform distribution of sample points. Also such 
good properties of DC as mentioned above cannot be directly attributed to HC-CGS. 
Analogous estimations for HC-CGS are still open problems, because it is difficult to 
predict and calculate the exact distribution of points after some genetic epochs.  

Introducing such cluster representation to HC-CGS causes also that stopping strategy 
from HC-CGS should be modified. Under the assumption that clusters cannot intersect, 
the criterion �the whole domain has been processed� should be removed. 
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